コード例 #1
0
def test_intproj(old_numpy_printing, override_plot_backend):
    p = plot.IntervalProjection()
    r = p._repr_html_()

    check_empty(r, 'IntervalProjection', nsummary=8)

    x = np.arange(5, 8, 0.5)
    y = np.asarray([2, 3, 4, 5, 4, 3])
    dy = y / 2
    d = Data1D('n n', x, y, staterror=dy)

    m = Const1D()

    fit = Fit(d, m, stat=Chi2())
    fr = fit.fit()
    assert fr.succeeded

    p.prepare(min=1, max=6, nloop=10)
    p.calc(fit, m.c0)

    r = p._repr_html_()
    assert r is not None

    if plot.backend.name == 'pylab':
        assert '<summary>IntervalProjection</summary>' in r
        assert '<svg ' in r
        return

    assert '<summary>IntervalProjection (8)</summary>' in r

    assert '<div class="dataname">x</div><div class="dataval">[ 1.        1.555556  2.111111  2.666667  3.222222  3.777778  4.333333  4.888889\n  5.444444  6.      ]</div>' in r
    assert '<div class="dataname">nloop</div><div class="dataval">10</div>' in r
コード例 #2
0
def test_errresults_limits_interval():
    """Missing an error limit"""
    d = Data1D('dx', [1, 2, 3], [4, 2, 2], [1.2, 0.9, 0.9])
    m = Const1D()
    m.c0 = 3
    f = fit.Fit(d, m, stat=Chi2())
    er = f.est_errors()

    # perhaps should just fake this instead?
    assert len(er.parmaxes) == 1
    er.parmaxes = ([0.1, 0.2], )

    r = er._repr_html_()

    assert r is not None

    print(r)

    assert '<summary>covariance 1&#963; (68.2689%) bounds</summary>' in r
    assert '<summary>Summary (2)' in r
    assert '<td>const1d.c0</td>' in r
    assert '<div class="dataname">Fitting Method</div><div class="dataval">levmar</div>' in r
    assert '<div class="dataname">Statistic</div><div class="dataval">chi2</div>' in r

    assert '<tr><td>const1d.c0</td><td>           3</td><td>   -0.562226</td><td>(1.000000e-01, 2.000000e-01)</td></tr>' in r
コード例 #3
0
ファイル: test_stats_unit.py プロジェクト: wsf1990/sherpa
def test_stats_calc_stat_chi2_nostat(usesys):
    """chi-quare statistic with no staterror fails"""

    data, model = setup_single(False, usesys)
    statobj = Chi2()
    with pytest.raises(StatErr) as excinfo:
        statobj.calc_stat(data, model)

    emsg = 'If you select chi2 as the statistic, all datasets ' + \
           'must provide a staterror column'
    assert emsg == str(excinfo.value)
コード例 #4
0
def test_data2d_int_eval_model_to_fit(array_sizes_fixture):
    from sherpa.fit import Fit
    from sherpa.optmethods import LevMar
    from sherpa.stats import Chi2
    from sherpa.models import Gauss2D

    x0, x1, dx, y = array_sizes_fixture
    data2 = Data2DInt('name', x0.flatten(), x0.flatten() + dx, x1.flatten(), x1.flatten() + dx, y.flatten(),
                      staterror=numpy.sqrt(y).flatten())

    model2 = Gauss2D()
    fitter = Fit(data2, model2, Chi2(), LevMar())
    fitter.fit()  # Failed in Sherpa 4.11.0
コード例 #5
0
def test_regproj(old_numpy_printing, override_plot_backend):
    p = plot.RegionProjection()
    r = p._repr_html_()

    check_empty(r, 'RegionProjection', nsummary=13)

    x = np.arange(5, 8, 0.5)
    y = np.asarray([2, 3, 4, 5, 4, 3])
    dy = y / 2
    d = Data1D('n n', x, y, staterror=dy)

    m = Polynom1D()
    m.c1.thaw()

    fit = Fit(d, m, stat=Chi2())
    fr = fit.fit()
    assert fr.succeeded

    p.prepare(min=(-2, -1), max=(2, 2), nloop=(10, 20))
    p.calc(fit, m.c0, m.c1)

    r = p._repr_html_()
    assert r is not None

    if plot_backend_is("pylab"):
        assert "<summary>RegionProjection</summary>" in r
        assert "<svg " in r
        return

    assert "<summary>RegionProjection (13)</summary>" in r

    # Issue #1372 shows that the numbers here can depend on the platform; as
    # this test is not about whether the fit converged to the same solution
    # the tests are very basic. An alternative would be to just place
    # the values from the fit object into the strings, but then there is
    # the problem that this test currently requires old_numpy_printing,
    # so the results would not necessarily match.
    #
    assert '<div class="dataname">parval0</div><div class="dataval">-0.5' in r
    assert '<div class="dataname">parval1</div><div class="dataval">0.5' in r
    assert '<div class="dataname">sigma</div><div class="dataval">(1, 2, 3)</div>' in r

    # These values may depend on the platform so only very-limited check.
    #
    assert '<div class="dataname">y</div><div class="dataval">[ 30' in r
    assert '<div class="dataname">levels</div><div class="dataval">[  3.6' in r

    assert '<div class="dataname">min</div><div class="dataval">[-2, -1]</div>' in r
    assert '<div class="dataname">max</div><div class="dataval">[2, 2]</div>' in r

    assert '<div class="dataname">nloop</div><div class="dataval">(10, 20)</div>' in r
コード例 #6
0
def test_errresults():
    d = Data1D('dx', [1, 2, 3], [4, 2, 2], [1.2, 0.9, 0.9])
    m = Const1D()
    m.c0 = 3
    f = fit.Fit(d, m, stat=Chi2())
    er = f.est_errors()
    r = er._repr_html_()

    assert r is not None

    assert '<summary>covariance 1&#963; (68.2689%) bounds</summary>' in r
    assert '<summary>Summary (2)' in r
    assert '<td>const1d.c0</td>' in r
    assert '<div class="dataname">Fitting Method</div><div class="dataval">levmar</div>' in r
    assert '<div class="dataname">Statistic</div><div class="dataval">chi2</div>' in r

    assert '<tr><td>const1d.c0</td><td>           3</td><td>   -0.562226</td><td>    0.562226</td></tr>' in r
コード例 #7
0
def test_regproj(old_numpy_printing, override_plot_backend):
    p = plot.RegionProjection()
    r = p._repr_html_()

    check_empty(r, 'RegionProjection', nsummary=13)

    x = np.arange(5, 8, 0.5)
    y = np.asarray([2, 3, 4, 5, 4, 3])
    dy = y / 2
    d = Data1D('n n', x, y, staterror=dy)

    m = Polynom1D()
    m.c1.thaw()

    fit = Fit(d, m, stat=Chi2())
    fr = fit.fit()
    assert fr.succeeded

    p.prepare(min=(-2, -1), max=(2, 2), nloop=(10, 20))
    p.calc(fit, m.c0, m.c1)

    r = p._repr_html_()
    assert r is not None

    if plot.backend.name == 'pylab':
        assert '<summary>RegionProjection</summary>' in r
        assert '<svg ' in r
        return

    print(r)
    assert '<summary>RegionProjection (13)</summary>' in r

    assert '<div class="dataname">parval0</div><div class="dataval">-0.5315772076542427</div>' in r
    assert '<div class="dataname">parval1</div><div class="dataval">0.5854611101216837</div>' in r
    assert '<div class="dataname">sigma</div><div class="dataval">(1, 2, 3)</div>' in r

    assert '<div class="dataname">y</div><div class="dataval">[ 306.854444  282.795953  259.744431  237.699877  216.662291  196.631674\n' in r

    assert '<div class="dataname">levels</div><div class="dataval">[  3.606863   7.491188  13.140272]</div>' in r
    assert '<div class="dataname">min</div><div class="dataval">[-2, -1]</div>' in r
    assert '<div class="dataname">max</div><div class="dataval">[2, 2]</div>' in r

    assert '<div class="dataname">nloop</div><div class="dataval">(10, 20)</div>' in r
コード例 #8
0
def test_fitresults_chisq():
    d = Data1D('dx', [1, 2, 3], [4, 2, 2], [1.2, 1.4, 1.4])
    m = Const1D()
    m.c0 = 3
    fr = fit.Fit(d, m, method=LevMar(), stat=Chi2()).fit()
    r = fr._repr_html_()

    assert r is not None

    assert '<summary>Fit parameters</summary>' in r
    assert '<summary>Summary (10)</summary>' in r
    assert '<td>const1d.c0</td>' in r

    assert '<div class="dataname">Method</div><div class="dataval">{}</div>'.format(fr.methodname) in r
    assert '<div class="dataname">Final statistic</div><div class="dataval">1.65289</div>' in r

    assert '<div class="dataname">Reduced statistic</div><div class="dataval">0.826446</div>' in r
    assert '<div class="dataname">Probability (Q-value)</div><div class="dataval">0.437602</div>' in r

    assert '<div class="dataname">Number of data points</div><div class="dataval">3</div>' in r
    assert '<div class="dataname">Degrees of freedom</div><div class="dataval">2</div>' in r
コード例 #9
0
def test_errresults_multi():
    d1 = Data1D('dx', [1, 2, 3], [4, 2, 2], [1.2, 0.9, 0.9])
    d2 = Data1D('dx', [10, 11, 12, 13], [4, 4, 2, 4], [0.8, 1.1, 1.1, 0.9])
    d = DataSimulFit('combined', (d1, d2))

    m1 = Const1D()
    m1.c0 = 3
    m = SimulFitModel('silly', (m1, m1))

    f = fit.Fit(d, m, stat=Chi2())
    er = f.est_errors()
    r = er._repr_html_()

    assert r is not None

    assert '<summary>covariance 1&#963; (68.2689%) bounds</summary>' in r
    assert '<summary>Summary (2)' in r
    assert '<td>const1d.c0</td>' in r
    assert '<div class="dataname">Fitting Method</div><div class="dataval">levmar</div>' in r
    assert '<div class="dataname">Statistic</div><div class="dataval">chi2</div>' in r

    assert '<tr><td>const1d.c0</td><td>           3</td><td>   -0.362415</td><td>    0.362415</td></tr>' in r
コード例 #10
0
ファイル: example.py プロジェクト: wsf1990/sherpa
report("mdl")

from sherpa.plot import ModelPlot
mplot = ModelPlot()
mplot.prepare(d, mdl)
plt.subplot(2, 1, 1)
mplot.plot(clearwindow=False)
plt.subplot(2, 1, 2)
dplot.plot(clearwindow=False)
plt.title('')

savefig("model_data_before_fit.png")

from sherpa.stats import Chi2
from sherpa.fit import Fit
f = Fit(d, mdl, stat=Chi2())
report("f")

print("Starting statistic: {}".format(f.calc_stat()))

fitres = f.fit()
report("fitres.format()")

print("Reduced chi square = {:.2f}".format(fitres.rstat))

mplot.prepare(d, mdl)
dplot.plot()
mplot.overplot()
savefig("model_data_fit1.png")

from sherpa.optmethods import NelderMead