def test_predict(): model = Mock() layer = Mock criterion = Mock() optimizer = Mock() metrics = Mock() sizes = [(1, 24, 24), (24, 10)] l1 = layer() l1.get_input_shape_at.return_value = sizes[0] l2 = layer() l2.get_output_shape_at.return_value = sizes[1] model.layers = [l1, l2] batch = 32 epoch = 2 kdpm = DeepLearningModel(model, criterion, optimizer, batch, epoch, metrics) num_data = 30 data = np.array([np.random.rand(24, 24) for i in range(num_data)]) kdpm.predict(data) kdpm._model.predict.assert_called_once_with(data, batch_size=batch)
def test_wrong_predict(): model = Mock() layer = Mock sizes = [(1, 24, 24), (24, 10)] l1 = layer() l1.get_input_shape_at.return_value = sizes[0] l2 = layer() l2.get_output_shape_at.return_value = sizes[1] model.layers = [l1, l2] batch = 32 epoch = 2 kdpm = DeepLearningModel(model, batch, epoch) num_data = 30 data = np.array([np.random.rand(16, 16) for i in range(num_data)]) with pytest.raises(AssertionError): kdpm.predict(data)