コード例 #1
0
def classifier_svmocas_modular(fm_train_real=traindat,
                               fm_test_real=testdat,
                               label_train_twoclass=label_traindat,
                               C=0.9,
                               epsilon=1e-5,
                               num_threads=1):

    from shogun.Features import RealFeatures, SparseRealFeatures, Labels
    from shogun.Classifier import SVMOcas

    realfeat = RealFeatures(fm_train_real)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    realfeat = RealFeatures(fm_test_real)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)

    labels = Labels(label_train_twoclass)

    svm = SVMOcas(C, feats_train, labels)
    svm.set_epsilon(epsilon)
    svm.parallel.set_num_threads(num_threads)
    svm.set_bias_enabled(False)
    svm.train()

    svm.set_features(feats_test)
    svm.classify().get_labels()
    predictions = svm.classify()
    return predictions, svm, predictions.get_labels()
コード例 #2
0
def svmocas():
    print "SVMOcas"

    from shogun.Features import RealFeatures, SparseRealFeatures, Labels
    from shogun.Classifier import SVMOcas

    realfeat = RealFeatures(fm_train_real)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    realfeat = RealFeatures(fm_test_real)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)

    C = 0.9
    epsilon = 1e-5
    num_threads = 1
    labels = Labels(label_train_twoclass)

    svm = SVMOcas(C, feats_train, labels)
    svm.set_epsilon(epsilon)
    svm.parallel.set_num_threads(num_threads)
    svm.set_bias_enabled(False)
    svm.train()

    svm.set_features(feats_test)
    svm.classify().get_labels()
コード例 #3
0
def classify(true_labels):
    num_feats = 2
    num_vec = true_labels.get_num_labels()

    data_train = numpy.concatenate(
        (numpy.random.randn(num_feats, num_vec / 2) - 1,
         numpy.random.randn(num_feats, num_vec / 2) + 1),
        axis=1)
    realfeat = RealFeatures(data_train)
    feats_train = SparseRealFeatures()
    feats_train.obtain_from_simple(realfeat)
    C = 3.
    svm = SVMOcas(C, feats_train, true_labels)
    svm.train()

    data_test = numpy.concatenate(
        (numpy.random.randn(num_feats, num_vec / 2) - 1,
         numpy.random.randn(num_feats, num_vec / 2) + 1),
        axis=1)
    realfeat = RealFeatures(data_test)
    feats_test = SparseRealFeatures()
    feats_test.obtain_from_simple(realfeat)
    svm.set_features(feats_test)

    return numpy.array(svm.classify().get_labels())
コード例 #4
0
ファイル: all_evaluation.py プロジェクト: AsherBond/shogun
def classify (true_labels):
	num_feats=2
	num_vec=true_labels.get_num_labels()

	data_train=numpy.concatenate(
		(numpy.random.randn(num_feats, num_vec/2)-1,
			numpy.random.randn(num_feats, num_vec/2)+1),
		axis=1)
	realfeat=RealFeatures(data_train)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	C=3.
	svm=SVMOcas(C, feats_train, true_labels)
	svm.train()

	data_test=numpy.concatenate(
		(numpy.random.randn(num_feats, num_vec/2)-1,
			numpy.random.randn(num_feats, num_vec/2)+1),
		axis=1)
	realfeat=RealFeatures(data_test)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)
	svm.set_features(feats_test)

	return numpy.array(svm.classify().get_labels())
コード例 #5
0
def classifier_svmocas_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_twoclass=label_traindat,C=0.9,epsilon=1e-5,num_threads=1):

	from shogun.Features import RealFeatures, SparseRealFeatures, Labels
	from shogun.Classifier import SVMOcas

	realfeat=RealFeatures(fm_train_real)
	feats_train=SparseRealFeatures()
	feats_train.obtain_from_simple(realfeat)
	realfeat=RealFeatures(fm_test_real)
	feats_test=SparseRealFeatures()
	feats_test.obtain_from_simple(realfeat)

	labels=Labels(label_train_twoclass)

	svm=SVMOcas(C, feats_train, labels)
	svm.set_epsilon(epsilon)
	svm.parallel.set_num_threads(num_threads)
	svm.set_bias_enabled(False)
	svm.train()

	svm.set_features(feats_test)
	svm.classify().get_labels()
	predictions = svm.classify()
	return predictions, svm, predictions.get_labels()