def create_param_tree(): root=ModelSelectionParameters() c1=ModelSelectionParameters("C1") root.append_child(c1) c1.build_values(-1.0, 1.0, R_EXP) c2=ModelSelectionParameters("C2") root.append_child(c2) c2.build_values(-1.0, 1.0, R_EXP) gaussian_kernel=GaussianKernel() # print all parameter available for modelselection # Dont worry if yours is not included, simply write to the mailing list gaussian_kernel.print_modsel_params() param_gaussian_kernel=ModelSelectionParameters("kernel", gaussian_kernel) gaussian_kernel_width=ModelSelectionParameters("width") gaussian_kernel_width.build_values(-1.0, 1.0, R_EXP, 1.0, 2.0) param_gaussian_kernel.append_child(gaussian_kernel_width) root.append_child(param_gaussian_kernel) power_kernel=PowerKernel() # print all parameter available for modelselection # Dont worry if yours is not included, simply write to the mailing list power_kernel.print_modsel_params() param_power_kernel=ModelSelectionParameters("kernel", power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree=ModelSelectionParameters("degree") param_power_kernel_degree.build_values(1.0, 2.0, R_LINEAR) param_power_kernel.append_child(param_power_kernel_degree) metric=MinkowskiMetric(10) # print all parameter available for modelselection # Dont worry if yours is not included, simply write to the mailing list metric.print_modsel_params() param_power_kernel_metric1=ModelSelectionParameters("distance", metric) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k=ModelSelectionParameters("k") param_power_kernel_metric1_k.build_values(1.0, 2.0, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) return root
def minkowski_metric (): print 'MinkowskiMetric' from shogun.Features import RealFeatures from shogun.Distance import MinkowskiMetric feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) k=3 distance=MinkowskiMetric(feats_train, feats_train, k) dm_train=distance.get_distance_matrix() distance.init(feats_train, feats_test) dm_test=distance.get_distance_matrix()
def distance_minkowski_modular (fm_train_real=traindat,fm_test_real=testdat,k=3): from shogun.Features import RealFeatures from shogun.Distance import MinkowskiMetric feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) distance=MinkowskiMetric(feats_train, feats_train, k) dm_train=distance.get_distance_matrix() distance.init(feats_train, feats_test) dm_test=distance.get_distance_matrix() return distance,dm_train,dm_test
def modelselection_parameter_tree_modular(dummy): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root = ModelSelectionParameters() combinations = root.get_combinations() combinations.get_num_elements() c = ModelSelectionParameters('C') root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel = PowerKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #power_kernel.print_modsel_params() param_power_kernel = ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree = ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1 = MinkowskiMetric(10) # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #metric1.print_modsel_params() param_power_kernel_metric1 = ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k = ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel = GaussianKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #gaussian_kernel.print_modsel_params() param_gaussian_kernel = ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width = ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel = DistantSegmentsKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list #ds_kernel.print_modsel_params() param_ds_kernel = ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta = ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta = ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) # root.print_tree() combinations = root.get_combinations() # for i in range(combinations.get_num_elements()): # combinations.get_element(i).print_tree() return
def modelselection_parameter_tree_modular(): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.ModelSelection import DynamicParameterCombinationArray from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root = ModelSelectionParameters() combinations = root.get_combinations() combinations.get_num_elements() c = ModelSelectionParameters('C') root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel = PowerKernel() param_power_kernel = ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree = ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1 = MinkowskiMetric(10) param_power_kernel_metric1 = ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k = ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel = GaussianKernel() param_gaussian_kernel = ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width = ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel = DistantSegmentsKernel() param_ds_kernel = ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta = ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta = ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) root.print_tree() combinations = root.get_combinations() for i in range(combinations.get_num_elements()): combinations.get_element(i).print_tree() return
def modelselection_parameter_tree_modular(dummy): from shogun.ModelSelection import ParameterCombination from shogun.ModelSelection import ModelSelectionParameters, R_EXP, R_LINEAR from shogun.ModelSelection import DynamicParameterCombinationArray from shogun.Kernel import PowerKernel from shogun.Kernel import GaussianKernel from shogun.Kernel import DistantSegmentsKernel from shogun.Distance import MinkowskiMetric root=ModelSelectionParameters() combinations=root.get_combinations() combinations.get_num_elements() c=ModelSelectionParameters('C'); root.append_child(c) c.build_values(1, 11, R_EXP) power_kernel=PowerKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list power_kernel.print_modsel_params() param_power_kernel=ModelSelectionParameters('kernel', power_kernel) root.append_child(param_power_kernel) param_power_kernel_degree=ModelSelectionParameters('degree') param_power_kernel_degree.build_values(1, 1, R_EXP) param_power_kernel.append_child(param_power_kernel_degree) metric1=MinkowskiMetric(10) # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list metric1.print_modsel_params() param_power_kernel_metric1=ModelSelectionParameters('distance', metric1) param_power_kernel.append_child(param_power_kernel_metric1) param_power_kernel_metric1_k=ModelSelectionParameters('k') param_power_kernel_metric1_k.build_values(1, 12, R_LINEAR) param_power_kernel_metric1.append_child(param_power_kernel_metric1_k) gaussian_kernel=GaussianKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list gaussian_kernel.print_modsel_params() param_gaussian_kernel=ModelSelectionParameters('kernel', gaussian_kernel) root.append_child(param_gaussian_kernel) param_gaussian_kernel_width=ModelSelectionParameters('width') param_gaussian_kernel_width.build_values(1, 2, R_EXP) param_gaussian_kernel.append_child(param_gaussian_kernel_width) ds_kernel=DistantSegmentsKernel() # print all parameter available for modelselection # Dont worry if yours is not included but, write to the mailing list ds_kernel.print_modsel_params() param_ds_kernel=ModelSelectionParameters('kernel', ds_kernel) root.append_child(param_ds_kernel) param_ds_kernel_delta=ModelSelectionParameters('delta') param_ds_kernel_delta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_delta) param_ds_kernel_theta=ModelSelectionParameters('theta') param_ds_kernel_theta.build_values(1, 2, R_EXP) param_ds_kernel.append_child(param_ds_kernel_theta) root.print_tree() combinations=root.get_combinations() for i in range(combinations.get_num_elements()): combinations.get_element(i).print_tree() return