def compare_AEM_with_MMM(model_path, img_path='/Data/Latent/NISTSD27/image/', output_path='/AutomatedLatentRecognition/Results/minutiae/NISTSD27_latents_Contrast/', minu_path='/Data/Latent/NISTSD27/ManMinu', processing=None, thr=0.01): minu_model = ImportGraph(model_path) img_files = glob.glob(img_path + '*.bmp') img_files.sort() manu_files = glob.glob(minu_path + '*.txt') manu_files.sort() for i, img_file in enumerate(img_files): img = misc.imread(img_file, mode='L') if processing == 'contrast': img = LP.local_constrast_enhancement(img) elif processing == 'STFT': img = LP.STFT(img) elif processing == 'texture': img = LP.FastCartoonTexture(img) elif processing == 'texture_STFT': img = LP.FastCartoonTexture(img) img = LP.STFT(img) mnt = minu_model.run_whole_image(img, minu_thr=thr) img_name = os.path.basename(img_file) fname = output_path + os.path.splitext(img_name)[0] + '_minu.jpeg' minutiae_set = [] minutiae_set.append(mnt) input_minu = np.loadtxt(manu_files[i]) input_minu[:, 2] = input_minu[:, 2] / 180.0 * np.pi minutiae_set.append(input_minu) print i show.show_minutiae_sets(img, minutiae_set, mask=None, block=False, fname=fname) print fname
def feature_extraction_single_latent(self, img_file, output_dir=None, ppi=500, show_processes=False, show_minutiae=False, minu_file=None): block = False block_size = 16 img0 = io.imread(img_file, mode='L') # / 255.0 img = img0.copy() if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) name = os.path.basename(img_file) start = timer() h, w = img.shape if h > 1000 and w > 1000: return None, None # cropping using two dictionary based approach if minu_file is not None: manu_minu = np.loadtxt(minu_file) # # # remove low quality minutiae points input_minu = np.array(manu_minu) input_minu[:, 2] = input_minu[:, 2] / 180.0 * np.pi else: input_minu = [] descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) STFT_texture_img = preprocessing.STFT(texture_img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) STFT_img = preprocessing.STFT(img) constrast_STFT_img = preprocessing.STFT(contrast_img_guassian) # step 1: enhance the latent based on our autoencoder AEC_img = self.enhancement_model.run_whole_image(STFT_texture_img) quality_map_AEC, dir_map_AEC, fre_map_AEC = get_maps.get_quality_map_dict( AEC_img, self.dict_all, self.dict_ori, self.dict_spacing, R=500.0) blkmask_AEC = quality_map_AEC > 0.45 blkmask_AEC = binary_closing(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_AEC = binary_opening(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_SSIM = get_maps.SSIM(STFT_texture_img, AEC_img, thr=0.2) blkmask = blkmask_SSIM * blkmask_AEC blkH, blkW = blkmask.shape mask = cv2.resize(blkmask.astype(float), (block_size * blkW, block_size * blkH), interpolation=cv2.INTER_LINEAR) mask[mask > 0] = 1 minutiae_sets = [] mnt_STFT = self.minu_model[0].run_whole_image(STFT_img, minu_thr=0.05) minutiae_sets.append(mnt_STFT) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_STFT_img.jpeg' show.show_minutiae_sets(STFT_img, [input_minu, mnt_STFT], mask=None, block=block, fname=fname) mnt_STFT = self.minu_model[0].run_whole_image(constrast_STFT_img, minu_thr=0.1) minutiae_sets.append(mnt_STFT) mnt_AEC = self.minu_model[1].run_whole_image(AEC_img, minu_thr=0.25) mnt_AEC = self.remove_spurious_minutiae(mnt_AEC, mask) minutiae_sets.append(mnt_AEC) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae_sets(AEC_img, [input_minu, mnt_AEC], mask=mask, block=block, fname=fname) enh_contrast_img = filtering.gabor_filtering_pixel2( contrast_img_guassian, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_contrast = self.minu_model[1].run_whole_image(enh_contrast_img, minu_thr=0.25) mnt_contrast = self.remove_spurious_minutiae(mnt_contrast, mask) minutiae_sets.append(mnt_contrast) enh_texture_img = filtering.gabor_filtering_pixel2( texture_img, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_texture = self.minu_model[1].run_whole_image(enh_texture_img, minu_thr=0.25) mnt_texture = self.remove_spurious_minutiae(mnt_texture, mask) minutiae_sets.append(mnt_texture) h, w = img.shape latent_template = template.Template() # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] descriptor_imgs.append(STFT_img) descriptor_imgs.append(texture_img) descriptor_imgs.append(enh_texture_img) descriptor_imgs.append(enh_contrast_img) mnt2 = self.get_common_minutiae(minutiae_sets, thr=2) mnt3 = self.get_common_minutiae(minutiae_sets, thr=3) minutiae_sets.append(mnt3) minutiae_sets.append(mnt2) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_common_2.jpeg' show.show_minutiae_sets(img, [input_minu, mnt2], mask=mask, block=block, fname=fname) end = timer() print('Time for minutiae extraction: %f' % (end - start)) start = timer() for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction( des_img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map_AEC, mask=mask) latent_template.add_minu_template(minu_template) end = timer() print('Time for minutiae descriptor generation: %f' % (end - start)) start = timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 16): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map_AEC[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae.append([x_i, y_i, math.pi + ori]) virtual_minutiae = np.asarray(virtual_minutiae) texture_template = [] if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( enh_contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128, patch_size=96) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=None) latent_template.add_texture_template(texture_template) end = timer() print('Time for texture template generation: %f' % (end - start)) return latent_template, texture_template