def region_model_repository(self): """ Returns ------- - RegionModelRepository - configured with 'Tistel-ptgsk' etc. """ id_list = [1225] # parameters can be loaded from yaml_config Model parameters.. pt_params = api.PriestleyTaylorParameter( ) # *params["priestley_taylor"]) gs_params = api.GammaSnowParameter() # *params["gamma_snow"]) ss_params = api.SkaugenParameter() ae_params = api.ActualEvapotranspirationParameter( ) # *params["act_evap"]) k_params = api.KirchnerParameter() # *params["kirchner"]) p_params = api.PrecipitationCorrectionParameter( ) # TODO; default 1.0, is it used ?? ptgsk_rm_params = pt_gs_k.PTGSKParameter(pt_params, gs_params, ae_params, k_params, p_params) ptssk_rm_params = pt_ss_k.PTSSKParameter(pt_params, ss_params, ae_params, k_params, p_params) # create the description for 2 models of tistel,ptgsk, ptssk tistel_grid_spec = self.grid_spec # cfg_list = [ RegionModelConfig("Tistel-ptgsk", pt_gs_k.PTGSKModel, ptgsk_rm_params, tistel_grid_spec, "unregulated", "FELTNR", id_list), RegionModelConfig("Tistel-ptssk", pt_ss_k.PTSSKModel, ptssk_rm_params, tistel_grid_spec, "unregulated", "FELTNR", id_list) ] rm_cfg_dict = {x.name: x for x in cfg_list} return GisRegionModelRepository(rm_cfg_dict)
def _create_std_ptgsk_param(self): ptp = api.PriestleyTaylorParameter(albedo=0.85, alpha=1.23) ptp.albedo = 0.9 ptp.alpha = 1.26 aep = api.ActualEvapotranspirationParameter(ae_scale_factor=1.5) aep.ae_scale_factor = 1.1 gsp = api.GammaSnowParameter( winter_end_day_of_year=99, initial_bare_ground_fraction=0.04, snow_cv=0.44, tx=-0.3, wind_scale=1.9, wind_const=0.9, max_water=0.11, surface_magnitude=33.0, max_albedo=0.88, min_albedo=0.55, fast_albedo_decay_rate=6.0, slow_albedo_decay_rate=4.0, snowfall_reset_depth=6.1, glacier_albedo=0.44 ) # TODO: This does not work due to boost.python template arity of 15, calculate_iso_pot_energy=False) gsp.calculate_iso_pot_energy = False gsp.snow_cv = 0.5 gsp.initial_bare_ground_fraction = 0.04 kp = api.KirchnerParameter(c1=-2.55, c2=0.8, c3=-0.01) kp.c1 = 2.5 kp.c2 = -0.9 kp.c3 = 0.01 spcp = api.PrecipitationCorrectionParameter(scale_factor=0.9) ptgsk_p = pt_gs_k.PTGSKParameter(ptp, gsp, aep, kp, spcp) ptgsk_p.ae.ae_scale_factor = 1.2 # sih: just to demo ae scale_factor can be set directly return ptgsk_p
def std_ptgsk_parameters(self): pt_params = api.PriestleyTaylorParameter( ) # *params["priestley_taylor"]) gs_params = api.GammaSnowParameter() # *params["gamma_snow"] ae_params = api.ActualEvapotranspirationParameter( ) # *params["act_evap"]) k_params = api.KirchnerParameter() # *params["kirchner"]) p_params = api.PrecipitationCorrectionParameter( ) # TODO; default 1.0, is it used ?? return api.pt_gs_k.PTGSKParameter(pt_params, gs_params, ae_params, k_params, p_params)
def test_region_model_repository(self): id_list = [1225] epsg_id = 32632 # parameters can be loaded from yaml_config Model parameters.. pt_params = api.PriestleyTaylorParameter( ) # *params["priestley_taylor"]) gs_params = api.GammaSnowParameter() # *params["gamma_snow"]) ss_params = api.SkaugenParameter() ae_params = api.ActualEvapotranspirationParameter( ) # *params["act_evap"]) k_params = api.KirchnerParameter() # *params["kirchner"]) p_params = api.PrecipitationCorrectionParameter( ) # TODO; default 1.0, is it used ?? ptgsk_rm_params = api.pt_gs_k.PTGSKParameter( pt_params, gs_params, ae_params, k_params, p_params) ptssk_rm_params = api.pt_ss_k.PTSSKParameter( pt_params, ss_params, ae_params, k_params, p_params) # create the description for 4 models of tistel,ptgsk, ptssk, full and optimized tistel_grid_spec = GridSpecification(epsg_id=epsg_id, x0=362000.0, y0=6765000.0, dx=1000, dy=1000, nx=8, ny=8) cfg_list = [ RegionModelConfig("tistel-ptgsk", PTGSKModel, ptgsk_rm_params, tistel_grid_spec, "unregulated", "FELTNR", id_list), RegionModelConfig("tistel-ptgsk-opt", PTGSKOptModel, ptgsk_rm_params, tistel_grid_spec, "unregulated", "FELTNR", id_list), RegionModelConfig("tistel-ptssk", PTSSKModel, ptssk_rm_params, tistel_grid_spec, "unregulated", "FELTNR", id_list) ] rm_cfg_dict = {x.name: x for x in cfg_list} rmr = GisRegionModelRepository( rm_cfg_dict ) # ok, now we have a Gis RegionModelRepository that can handle all named entities we pass. cm1 = rmr.get_region_model( "tistel-ptgsk") # pull out a PTGSKModel for tistel cm2 = rmr.get_region_model("tistel-ptgsk-opt") # Does not work, fail on ct. model: cm3 = rmr.get_region_model( "tistel-ptssk") # pull out a PTGSKModel for tistel # cm4= rmr.get_region_model("tistel-ptssk",PTSSKOptModel) self.assertIsNotNone(cm3) self.assertIsNotNone(cm1) self.assertIsNotNone(cm2) self.assertIsNotNone( cm2.catchment_id_map ) # This one is needed in order to properly map catchment-id to internal id self.assertEqual(cm2.catchment_id_map[0], id_list[0])
# plot = ax.scatter(x, y, c=z, marker='o', s=10, lw=5, cmap=cm) # plt.colorbar(plot).set_label('sub-catchments assocciate to targets') plt.legend(fontsize=16, loc=1) plt.show() timelist = [] for i in range(len(ts_timestamps)): timelist.append((str(ts_timestamps[i])[0:10], dis_sims[i])) timelist_pd = pd.DataFrame(timelist) timelist_pd.to_csv('dis_sims_G.csv') # Somthing more to know # Getting access to defualt values of variables (not used in simulation) parameterg = api.GammaSnowParameter() parameterk = api.KirchnerParameter() print('slow_albedo_decay_rate = ', parameterg.slow_albedo_decay_rate) print('Kirchner C1 = ', parameterk.c1) # Getting access to the values are used for simulation which are in model.yaml (used in simulation) param = simulator.region_model.get_region_parameter() print('slow_albedo_decay_rate = ', param.gs.slow_albedo_decay_rate) print('Kirchner C1 = ', param.kirchner.c1) # Getting access to atributes of simulator for attr in dir(simulator.region_model): if attr[0] is not '_': #ignore privates print(attr)