コード例 #1
0
    def _convert_to_timeseries(self, data):
        """Convert timeseries from numpy structures to shyft.api timeseries.
        We assume the time axis is regular, and that we can use a point time
        series with a parametrized time axis definition and corresponding
        vector of values. If the time series is missing on the data, we insert
        it into non_time_series.
        Returns
        -------
        timeseries: dict
            Time series arrays keyed by type
        """
        tsc = api.TsFactory().create_point_ts
        time_series = {}
        for key, (data, ta) in data.items():

            def construct(d):
                if ta.size() != d.size:
                    raise WRFDataRepositoryError(
                        "Time axis size {} not equal to the number of "
                        "data points ({}) for {}"
                        "".format(ta.size(), d.size, key))
                return tsc(ta.size(), ta.start, ta.delta_t,
                           api.DoubleVector_FromNdArray(d),
                           api.point_interpretation_policy.POINT_AVERAGE_VALUE)

            time_series[key] = np.array(
                [construct(data[:, i]) for i in range(data.shape[1])])
        return time_series
コード例 #2
0
ファイル: test_ssa_smg_db.py プロジェクト: yisak/shyft
 def _create_shyft_ts(self):
     b = 946684800  # 2000.01.01 00:00:00
     h = 3600  #one hour in seconds
     values = np.array([1.0, 2.0, 3.0])
     shyft_ts_factory = api.TsFactory()
     return shyft_ts_factory.create_point_ts(len(values), b, h,
                                             api.DoubleVector(values))
コード例 #3
0
ファイル: test_ssa_smg_db.py プロジェクト: yisak/shyft
 def test_store(self):
     ds = SmGTsRepository(PREPROD)
     nl = [u'/shyft/test/a', u'/shyft/test/b',
           u'/shyft/test/c']  #[u'/ICC-test-v9.2']
     t0 = 946684800  # time_t/unixtime 2000.01.01 00:00:00
     dt = 3600  #one hour in seconds
     values = np.array([1.0, 2.0, 3.0])
     shyft_ts_factory = api.TsFactory()
     shyft_result_ts = shyft_ts_factory.create_point_ts(
         len(values), t0, dt, api.DoubleVector(values))
     shyft_catchment_result = dict()
     shyft_catchment_result[nl[0]] = shyft_result_ts
     shyft_catchment_result[nl[1]] = shyft_result_ts
     shyft_catchment_result[nl[2]] = shyft_result_ts
     r = ds.store(shyft_catchment_result)
     self.assertEqual(r, True)
     # now read back the ts.. and verify it's there..
     read_period = api.UtcPeriod(t0, t0 + 3 * dt)
     rts_list = ds.read(nl, read_period)
     self.assertIsNotNone(rts_list)
     c2 = rts_list[nl[-1]]
     [
         self.assertAlmostEqual(c2.value(i), values[i])
         for i in range(len(values))
     ]
コード例 #4
0
    def _convert_to_timeseries(self, data):
        """Convert timeseries from numpy structures to shyft.api timeseries.

        We assume the time axis is regular, and that we can use a point time
        series with a parametrized time axis definition and corresponding
        vector of values. If the time series is missing on the data, we insert
        it into non_time_series.

        Returns
        -------
        timeseries: dict
            Time series arrays keyed by type
        """
        tsc = api.TsFactory().create_point_ts
        time_series = {}
        for key, (data, ta) in data.items():
            fslice = (len(data.shape) - 2) * [slice(None)]
            I, J = data.shape[-2:]

            def construct(d):
                if ta.size() != d.size:
                    raise EcDataRepositoryError(
                        "Time axis size {} not equal to the number of "
                        "data points ({}) for {}"
                        "".format(ta.size(), d.size, key))
                return api.TimeSeries(
                    ta, api.DoubleVector_FromNdArray(d.flatten()),
                    self.series_type[key])

            time_series[key] = np.array(
                [[construct(data[fslice + [i, j]]) for j in range(J)]
                 for i in range(I)])
        return time_series
コード例 #5
0
    def _convert_to_timeseries(self, data, concat):
        """Convert timeseries from numpy structures to shyft.api timeseries.
        Returns
        -------
        timeseries: dict
            Time series arrays keyed by type
        """
        tsf = api.TsFactory().create_point_ts
        tsc = api.TimeSeries
        time_series = {}
        if concat:
            for key, (data, ta) in data.items():
                nb_timesteps, nb_pts = data.shape

                def construct(d):
                    if ta.size() != d.size:
                        raise ECConcatDataRepositoryError("Time axis size {} not equal to the number of "
                                                       "data points ({}) for {}"
                                                       "".format(ta.size(), d.size, key))
                    return tsf(ta.size(), ta.start, ta.delta_t,
                               api.DoubleVector.FromNdArray(d.flatten()), self.series_type[key])
                time_series[key] = np.array([construct(data[:, j]) for j in range(nb_pts)])
        else:
            def construct(d, tax):
                if tax.size() != d.size:
                    raise ECConcatDataRepositoryError("Time axis size {} not equal to the number of "
                                                         "data points ({}) for {}"
                                                         "".format(tax.size(), d.size, key))
                return tsc(tax, api.DoubleVector.FromNdArray(d.flatten()), self.series_type[key])
            for key, (data, ta) in data.items():
                nb_forecasts, nb_timesteps, nb_pts = data.shape
                time_series[key] = np.array([construct(data[i, :, j], ta[i]) for i in range(nb_forecasts) for j in range(nb_pts)])
        return time_series
コード例 #6
0
 def _convert_to_timeseries(self, data, t, ts_id):
     ta = api.TimeAxisFixedDeltaT(int(t[0]), int(t[1]) - int(t[0]),  len(t))
     tsc = api.TsFactory().create_point_ts
     def construct(d):
         return tsc(ta.size(), ta.start, ta.delta_t,
                     api.DoubleVector.FromNdArray(d))
     ts = [construct(data[:,j]) for j in range(data.shape[-1])]
     return {k:v for k, v in zip(ts_id,ts)}
コード例 #7
0
ファイル: test_time_series.py プロジェクト: yisak/shyft
 def test_vector_of_timeseries(self):
     dv = np.arange(self.ta.size())
     v = api.DoubleVector.from_numpy(dv)
     tsf = api.TsFactory();
     tsa = tsf.create_point_ts(self.n, self.t, self.d, v)
     tsvector = api.TsVector()
     self.assertEqual(len(tsvector), 0)
     tsvector.push_back(tsa)
     self.assertEqual(len(tsvector), 1)
コード例 #8
0
 def _create_constant_geo_ts(self, geo_ts_type, geo_point, utc_period, value):
     """Create a time point ts, with one value at the start
     of the supplied utc_period."""
     tv = api.UtcTimeVector()
     tv.push_back(utc_period.start)
     vv = api.DoubleVector()
     vv.push_back(value)
     cts = api.TsFactory().create_time_point_ts(utc_period, tv, vv, api.POINT_AVERAGE_VALUE)
     return geo_ts_type(geo_point, cts)
コード例 #9
0
ファイル: ssa_smg_db.py プロジェクト: larsostervolds/shyft
 def _make_shyft_ts_from_xts(xts):
     if not isinstance(xts, ITimeSeries):
         raise SmgDataError("Supplied xts should be of type ITimeSeries")
     t = api.UtcTimeVector()
     v = api.DoubleVector()
     for i in range(xts.Count):
         t.push_back(xts.Time(i).ToUnixTime())
         v.push_back(xts.Value(i).V)
     shyft_ts = api.TsFactory().create_time_point_ts(api.UtcPeriod(t[0], t[-1]), t, v)
     return shyft_ts
コード例 #10
0
    def test_create_TargetSpecificationPts(self):
        t = api.TargetSpecificationPts();
        t.scale_factor = 1.0
        t.calc_mode = api.NASH_SUTCLIFFE
        t.calc_mode = api.KLING_GUPTA;
        t.s_r = 1.0  # KGEs scale-factors
        t.s_a = 2.0
        t.s_b = 3.0
        self.assertAlmostEqual(t.scale_factor, 1.0)
        # create a ts with some points
        cal = api.Calendar();
        start = cal.time(api.YMDhms(2015, 1, 1, 0, 0, 0))
        dt = api.deltahours(1)
        tsf = api.TsFactory();
        times = api.UtcTimeVector()
        times.push_back(start + 1 * dt);
        times.push_back(start + 3 * dt);
        times.push_back(start + 4 * dt)

        values = api.DoubleVector()
        values.push_back(1.0)
        values.push_back(3.0)
        values.push_back(np.nan)
        tsp = tsf.create_time_point_ts(api.UtcPeriod(start, start + 24 * dt), times, values)
        # convert it from a time-point ts( as returned from current smgrepository) to a fixed interval with timeaxis, needed by calibration
        tst = api.TsTransform()
        tsa = tst.to_average(start, dt, 24, tsp)
        # tsa2 = tst.to_average(start,dt,24,tsp,False)
        # tsa_staircase = tst.to_average_staircase(start,dt,24,tsp,False) # nans infects the complete interval to nan
        # tsa_staircase2 = tst.to_average_staircase(start,dt,24,tsp,True) # skip nans, nans are 0
        # stuff it into the target spec.
        # also show how to specify snow-calibration
        cids = api.IntVector([0, 2, 3])
        t2 = api.TargetSpecificationPts(tsa,cids, 0.7, api.KLING_GUPTA, 1.0, 1.0, 1.0, api.SNOW_COVERED_AREA)
        t2.catchment_property = api.SNOW_WATER_EQUIVALENT
        self.assertEqual(t2.catchment_property, api.SNOW_WATER_EQUIVALENT)
        self.assertIsNotNone(t2.catchment_indexes)
        for i in range(len(cids)):
            self.assertEqual(cids[i],t2.catchment_indexes[i])
        t.ts = tsa
        #TODO: Does not work, list of objects are not yet convertible tv = api.TargetSpecificationVector([t, t2])
        tv=api.TargetSpecificationVector()
        tv.append(t)
        tv.append(t2)
        # now verify we got something ok
        self.assertEqual(2, tv.size())
        self.assertAlmostEqual(tv[0].ts.value(1), 1.5)  # average value 0..1 ->0.5
        self.assertAlmostEqual(tv[0].ts.value(2), 2.5)  # average value 0..1 ->0.5
        self.assertAlmostEqual(tv[0].ts.value(3), 3.0)  # average value 0..1 ->0.5
        # and that the target vector now have its own copy of ts
        tsa.set(1, 3.0)
        self.assertAlmostEqual(tv[0].ts.value(1), 1.5)  # make sure the ts passed onto target spec, is a copy
        self.assertAlmostEqual(tsa.value(1), 3.0)  # and that we really did change the source
コード例 #11
0
 def test_ts_factory(self):
     dv=np.arange(self.ta.size())
     v=api.DoubleVector.from_numpy(dv)
     t=api.UtcTimeVector();
     for i in range(self.ta.size()):
         t.push_back(self.ta(i).start)
     t.push_back(self.ta(self.ta.size() - 1).end)
     tsf=api.TsFactory()
     ts1=tsf.create_point_ts(self.ta.size(), self.t, self.d, v)
     ts2=tsf.create_time_point_ts(self.ta.total_period(), t, v)
     tslist=api.TsVector()
     tslist.push_back(ts1)
     tslist.push_back(ts2)
     self.assertEqual(tslist.size(), 2)
コード例 #12
0
ファイル: ssa_smg_db.py プロジェクト: yisak/shyft
 def _make_shyft_ts_from_ssa_ts(ssa_ts):
     if (not isinstance(ssa_ts, SsaTimeSeries)):
         raise SmgDataError(
             "supplied ssa_ts should be of type SsaTimeSeries")
     tsv = ssa_ts.GetTsAsVector(TimeSystemReference.Unix1970Utc)
     tsfactory = api.TsFactory()
     #todo: this can be done much faster using clr direct accesss, https://mail.python.org/pipermail/pythondotnet/2014-May/001526.html
     times = api.UtcTimeVector.FromNdArray(
         np.fromiter(tsv.Time, dtype=np.long))
     values = api.DoubleVector.FromNdArray(
         np.fromiter(tsv.Value, dtype=np.float))
     ts_period = api.UtcPeriod(tsv.TotalPeriod.Start.ToUnixTime(),
                               tsv.TotalPeriod.End.ToUnixTime())
     shyft_ts = tsfactory.create_time_point_ts(ts_period, times, values)
     return shyft_ts
コード例 #13
0
ファイル: test_time_series.py プロジェクト: yisak/shyft
 def test_average_accessor(self):
     dv = np.arange(self.ta.size())
     v = api.DoubleVector.from_numpy(dv)
     t = api.UtcTimeVector()
     for i in range(self.ta.size()):
         t.push_back(self.ta(i).start)
     t.push_back(
         self.ta(self.ta.size() - 1).end)  # important! needs n+1 points to determine n periods in the timeaxis
     tsf = api.TsFactory()
     ts1 = tsf.create_point_ts(self.ta.size(), self.t, self.d, v)
     ts2 = tsf.create_time_point_ts(self.ta.total_period(), t, v)
     tax = api.Timeaxis(self.ta.total_period().start + api.deltaminutes(30), api.deltahours(1), self.ta.size())
     avg1 = api.AverageAccessorTs(ts1, tax)
     self.assertEqual(avg1.size(), tax.size())
     self.assertIsNotNone(ts2)
コード例 #14
0
    def get_timeseries(self,
                       input_source_types,
                       utc_period,
                       geo_location_criteria=None):
        """Method for fetching the sources in NetCDF files.

        Parameters
        ----------
        input_source_types: list
            List of source types to retrieve (precipitation, temperature..)
        geo_location_criteria: bbox + proj.ref ?
        utc_period : of type UtcPeriod

        Returns
        -------
        data: dict
            Shyft.api container for geo-located time series. Types are found from the
            input_source_type.vector_t attribute.

        """
        data = dict()
        # Fill the data with actual values
        for input_source in input_source_types:
            api_source_type = self.source_type_map[input_source]
            ts = self._fetch_station_tseries(input_source,
                                             self._params['types'], utc_period)
            assert type(ts) is list
            tsf = api.TsFactory()
            acc_data = api_source_type.vector_t()
            for station in ts:
                times = station['time']
                assert type(times) is list
                dt = times[1] - times[0] if len(times) > 1 else api.deltahours(
                    1)
                total_period = api.UtcPeriod(times[0], times[-1] + dt)
                time_points = api.UtcTimeVector(times)
                time_points.push_back(total_period.end)
                values = station['values']
                value_points = api.DoubleVector.FromNdArray(values)
                api_ts = tsf.create_time_point_ts(total_period, time_points,
                                                  value_points)
                data_source = api_source_type(
                    api.GeoPoint(*station['location']), api_ts)
                acc_data.append(data_source)
            data[input_source] = acc_data
        return data
コード例 #15
0
    def _convert_to_timeseries(self, data):
        tsc = api.TsFactory().create_point_ts
        time_series = {}
        for key, (data, ta) in data.items():
            fslice = (len(data.shape) - 2)*[slice(None)]
            I, J = data.shape[-2:]

            def construct(d):
                if ta.size() != d.size:
                    raise ERAInterimDataRepositoryError("Time axis size {} not equal to the number of "
                                                   "data points ({}) for {}"
                                                   "".format(ta.size(), d.size, key))
                return tsc(ta.size(), ta.start, ta.delta_t,
                           api.DoubleVector_FromNdArray(d.flatten()), self.series_type[key])

            time_series[key] = np.array([[construct(data[fslice + [i, j]])
                                          for j in range(J)] for i in range(I)])
        return time_series
コード例 #16
0
 def test_vector_of_timeseries(self):
     dv=np.arange(self.ta.size())
     v=api.DoubleVector.from_numpy(dv)
     tsf=api.TsFactory()
     tsa=tsf.create_point_ts(self.n, self.t, self.d, v)
     tsvector=api.TsVector()
     self.assertEqual(len(tsvector), 0)
     tsvector.push_back(tsa)
     self.assertEqual(len(tsvector), 1)
     tsvector.push_back(tsa)
     vv=tsvector.values_at_time(self.ta.time(3))  # verify it's easy to get out vectorized results at time t
     self.assertEqual(len(vv), len(tsvector))
     self.assertAlmostEqual(vv[0], 3.0)
     self.assertAlmostEqual(vv[1], 3.0)
     ts_list=[tsa, tsa]
     vv=api.ts_vector_values_at_time(ts_list, self.ta.time(4))  # also check it work with list(TimeSeries)
     self.assertEqual(len(vv), len(tsvector))
     self.assertAlmostEqual(vv[0], 4.0)
     self.assertAlmostEqual(vv[1], 4.0)
コード例 #17
0
    def test_ts_transform(self):
        dv=np.arange(self.ta.size())
        v=api.DoubleVector.from_numpy(dv)
        t=api.UtcTimeVector();
        for i in range(self.ta.size()):
            t.push_back(self.ta(i).start)
        # t.push_back(self.ta(self.ta.size()-1).end) #important! needs n+1 points to determine n periods in the timeaxis
        t_start=self.ta.total_period().start
        dt=api.deltahours(1)
        tax=api.TimeAxisFixedDeltaT(t_start + api.deltaminutes(30), dt, self.ta.size())
        tsf=api.TsFactory()
        ts1=tsf.create_point_ts(self.ta.size(), self.t, self.d, v)
        ts2=tsf.create_time_point_ts(self.ta.total_period(), t, v)
        ts3=api.TsFixed(tax, v, api.POINT_INSTANT_VALUE)

        tst=api.TsTransform()
        tt1=tst.to_average(t_start, dt, tax.size(), ts1)
        tt2=tst.to_average(t_start, dt, tax.size(), ts2)
        tt3=tst.to_average(t_start, dt, tax.size(), ts3)
        self.assertEqual(tt1.size(), tax.size())
        self.assertEqual(tt2.size(), tax.size())
        self.assertEqual(tt3.size(), tax.size())
コード例 #18
0
for var, (file_name, source_type, source_vec) in source_map.items():
    nci = Dataset(
        os.path.join(shyftdata_dir,
                     'netcdf/orchestration-testdata/' + file_name))

    time = api.UtcTimeVector([int(t) for t in nci.variables['time'][:]])
    delta_t = time[1] - time[0] if len(time) > 1 else api.deltahours(1)
    for i in range(nci.dimensions['station'].size):
        x = nci.variables['x'][i]
        y = nci.variables['y'][i]
        z = nci.variables['z'][i]
        gp = api.GeoPoint(float(x), float(y), float(z))
        data = nci.variables[var][:, i]
        time_axis = api.TimeAxis(int(time[0]), delta_t, len(time))
        dts = api.TsFactory().create_time_point_ts(time_axis.total_period(),
                                                   time, data,
                                                   api.POINT_AVERAGE_VALUE)
        # add it to the variable source vector
        source_vec.append(source_type(gp, dts))
    nci.close()

# source data, which will be fed to the interpolation
region_environment = re


def plot_station_data(region_environment):
    """plot the data within each source vector of the 'ARegionEnvironment'
    """
    for fv, sv in region_environment.variables:
        n_stn = len(sv)
        fig, ax = plt.subplots(figsize=(15, 5))
コード例 #19
0
    def test_create_TargetSpecificationPts(self):
        t = api.TargetSpecificationPts()
        t.scale_factor = 1.0
        t.calc_mode = api.NASH_SUTCLIFFE
        t.calc_mode = api.KLING_GUPTA
        t.calc_mode = api.ABS_DIFF
        t.calc_mode = api.RMSE
        t.s_r = 1.0  # KGEs scale-factors
        t.s_a = 2.0
        t.s_b = 3.0
        self.assertIsNotNone(t.uid)
        t.uid = 'test'
        self.assertEqual(t.uid, 'test')
        self.assertAlmostEqual(t.scale_factor, 1.0)
        # create a ts with some points
        cal = api.Calendar()
        start = cal.time(2015, 1, 1, 0, 0, 0)
        dt = api.deltahours(1)
        tsf = api.TsFactory()
        times = api.UtcTimeVector()
        times.push_back(start + 1 * dt)
        times.push_back(start + 3 * dt)
        times.push_back(start + 4 * dt)

        values = api.DoubleVector()
        values.push_back(1.0)
        values.push_back(3.0)
        values.push_back(np.nan)
        tsp = tsf.create_time_point_ts(api.UtcPeriod(start, start + 24 * dt),
                                       times, values)
        # convert it from a time-point ts( as returned from current smgrepository) to a fixed interval with timeaxis, needed by calibration
        tst = api.TsTransform()
        tsa = tst.to_average(start, dt, 24, tsp)
        # tsa2 = tst.to_average(start,dt,24,tsp,False)
        # tsa_staircase = tst.to_average_staircase(start,dt,24,tsp,False) # nans infects the complete interval to nan
        # tsa_staircase2 = tst.to_average_staircase(start,dt,24,tsp,True) # skip nans, nans are 0
        # stuff it into the target spec.
        # also show how to specify snow-calibration
        cids = api.IntVector([0, 2, 3])
        t2 = api.TargetSpecificationPts(tsa, cids, 0.7, api.KLING_GUPTA, 1.0,
                                        1.0, 1.0, api.SNOW_COVERED_AREA,
                                        'test_uid')
        self.assertEqual(t2.uid, 'test_uid')
        t2.catchment_property = api.SNOW_WATER_EQUIVALENT
        self.assertEqual(t2.catchment_property, api.SNOW_WATER_EQUIVALENT)
        t2.catchment_property = api.CELL_CHARGE
        self.assertEqual(t2.catchment_property, api.CELL_CHARGE)
        self.assertIsNotNone(t2.catchment_indexes)
        for i in range(len(cids)):
            self.assertEqual(cids[i], t2.catchment_indexes[i])
        t.ts = api.TimeSeries(tsa)  # target spec is now a regular TimeSeries
        tv = api.TargetSpecificationVector()
        tv[:] = [t, t2]
        # now verify we got something ok
        self.assertEqual(2, tv.size())
        self.assertAlmostEqual(tv[0].ts.value(1),
                               1.5)  # average value 0..1 ->0.5
        self.assertAlmostEqual(tv[0].ts.value(2),
                               2.5)  # average value 0..1 ->0.5
        # self.assertAlmostEqual(tv[0].ts.value(3), 3.0)  # original flat out at end, but now:
        self.assertTrue(math.isnan(
            tv[0].ts.value(3)))  # strictly linear between points.
        # and that the target vector now have its own copy of ts
        tsa.set(1, 3.0)
        self.assertAlmostEqual(
            tv[0].ts.value(1),
            1.5)  # make sure the ts passed onto target spec, is a copy
        self.assertAlmostEqual(tsa.value(1),
                               3.0)  # and that we really did change the source
        # Create a clone of target specification vector
        tv2 = api.TargetSpecificationVector(tv)
        self.assertEqual(2, tv2.size())
        self.assertAlmostEqual(tv2[0].ts.value(1),
                               1.5)  # average value 0..1 ->0.5
        self.assertAlmostEqual(tv2[0].ts.value(2),
                               2.5)  # average value 0..1 ->0.5
        self.assertTrue(math.isnan(
            tv2[0].ts.value(3)))  # average value 0..1 ->0.5
        tv2[0].scale_factor = 10.0
        self.assertAlmostEqual(tv[0].scale_factor, 1.0)
        self.assertAlmostEqual(tv2[0].scale_factor, 10.0)
        # test we can create from breakpoint time-series
        ts_bp = api.TimeSeries(api.TimeAxis(api.UtcTimeVector([0, 25, 20]),
                                            30),
                               fill_value=2.0,
                               point_fx=api.POINT_AVERAGE_VALUE)

        tspec_bp = api.TargetSpecificationPts(ts_bp, cids, 0.7,
                                              api.KLING_GUPTA, 1.0, 1.0, 1.0,
                                              api.CELL_CHARGE, 'test_uid')
        self.assertIsNotNone(tspec_bp)
コード例 #20
0
 def _create_shyft_ts(self):
     b = 946684800  # 2000.01.01 00:00:00
     h = 3600  # One hour in seconds
     v = np.array([1.0, 2.0, 3.0])
     return api.TsFactory().create_point_ts(len(v), b, h,
                                            api.DoubleVector(v))