D = [[1. / Rvalue, 1. / Rvalue, -1., 0.], [1. / Rvalue, 1. / Rvalue, 0., -1.], [1., 0., 0., 0.], [0., 1., 0., 0.]] B = [[0., 0., -1. / Cvalue, 1. / Cvalue], [0., 0., 0., 0.]] LTIRDiodeBridge = FirstOrderLinearTIR(C, B) LTIRDiodeBridge.setDPtr(D) nslaw = ComplementarityConditionNSL(4) InterDiodeBridge = Interaction(4, nslaw, LTIRDiodeBridge, 1) # # Model # DiodeBridge = Model(t0, T, Modeltitle) # add the dynamical system in the non smooth dynamical system DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(LSDiodeBridge) # link the interaction and the dynamical system DiodeBridge.nonSmoothDynamicalSystem().link(InterDiodeBridge, LSDiodeBridge) # # Simulation # # (1) OneStepIntegrators theta = 0.5 gamma = 0.5 aOSI = EulerMoreauOSI(theta, gamma)
# # Interactions # # ball-floor H = [[1, 0, 0]] nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball)
def test_bouncing_ball1(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # # save and load data from xml and .dat # try: from siconos.io import save save(bouncingBall, "bouncingBall.xml") save(bouncingBall, "bouncingBall.bin") except: print("Warning : could not import save from siconos.io") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 #print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
body.contactors().push_back(SiconosContactor(box)) return body # Initial box body body = makeBox() # set external forces weight = [0, 0, -body.scalarMass() * g] body.setFExtPtr(weight) # # Model # bouncingBox = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBox.nonSmoothDynamicalSystem().insertDynamicalSystem(body) # # Simulation # # (1) OneStepIntegrators osi = MoreauJeanOSI(theta) ground = SiconosPlane() groundOffset = [0, 0, -0.5, 1, 0, 0, 0] # (2) Time discretisation --
D = [[0.0, -1.0, 0., 0.], [1.0, 0.0, 1., -1.], [0.0, -1., 0., 0.], [0., 1., 0., 0.]] B = [[0., 0., -1. / Cvalue, 1. / Cvalue], [0., 0., 0., 0.], [1.0 / Cfilt, 0., 1.0 / Cfilt, 0.]] LTIRDiodeBridgeCapFilter = FirstOrderLinearTIR(C, B) LTIRDiodeBridgeCapFilter.setDPtr(D) nslaw = ComplementarityConditionNSL(4) InterDiodeBridgeCapFilter = Interaction(4, nslaw, LTIRDiodeBridgeCapFilter, 1) # # Model # DiodeBridgeCapFilter = Model(t0, T, Modeltitle) # add the dynamical system in the non smooth dynamical system DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem( LS1DiodeBridgeCapFilter) DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem( LS2DiodeBridgeCapFilter) # link the interaction and the dynamical system DiodeBridgeCapFilter.nonSmoothDynamicalSystem().link(InterDiodeBridgeCapFilter, LS1DiodeBridgeCapFilter, LS2DiodeBridgeCapFilter) # # Simulation #
# dynamical systems process = FirstOrderLinearDS(x0, A) myProcessRelation = ZhuravlevTwistingR(C,B) myNslaw = RelayNSL(2) myNslaw.display() myProcessInteraction = Interaction(ninter, myNslaw, myProcessRelation) myNSDS = NonSmoothDynamicalSystem() myNSDS.insertDynamicalSystem(process) myNSDS.link(myProcessInteraction,process) filippov = Model(t0,T) filippov.setNonSmoothDynamicalSystemPtr(myNSDS) td = TimeDiscretisation(t0, h) s = TimeStepping(td) myIntegrator = EulerMoreauOSI(theta) myIntegrator.insertDynamicalSystem(process) s.insertIntegrator(myIntegrator) #TODO python <- SICONOS_RELAY_LEMKE # access dparam osnspb = Relay() s.insertNonSmoothProblem(osnspb)
ds.display() # test swig director # ds.computeMInt(1,x,v) # ds._mInt.display() # m=SiconosVector(3) # ds.computeMInt(1,x,v,m) # m.display() # m=np.zeros(3) # ds.computeMInt(1,x,v,m) # print m # raw_input() # Model # model = Model(t0, T) # add the dynamical system to the non smooth dynamical system model.nonSmoothDynamicalSystem().insertDynamicalSystem(ds) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem
def test_diode_bridge(): """Build diode bridge model""" # dynamical system bridge_ds = FirstOrderLinearDS(init_state, A) # interaction diode_bridge_relation = FirstOrderLinearTIR(C, B) diode_bridge_relation.setDPtr(D) nslaw = ComplementarityConditionNSL(4) bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1) # Model diode_bridge = Model(t0, total_time, model_title) # add the dynamical system in the non smooth dynamical system diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds) # link the interaction and the dynamical system diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds) # Simulation # (1) OneStepIntegrators theta = 0.5 integrator = EulerMoreauOSI(theta) integrator.insertDynamicalSystem(bridge_ds) # (2) Time discretisation time_discretisation = TimeDiscretisation(t0, time_step) # (3) Non smooth problem non_smooth_problem = LCP() # (4) Simulation setup with (1) (2) (3) bridge_simulation = TimeStepping(time_discretisation, integrator, non_smooth_problem) # simulation initialization diode_bridge.initialize(bridge_simulation) k = 0 h = bridge_simulation.timeStep() # Number of time steps N = (total_time - t0) / h # Get the values to be plotted # ->saved in a matrix dataPlot data_plot = empty([N, 8]) x = bridge_ds.x() print("Initial state : ", x) y = bridge_interaction.y(0) print("First y : ", y) lambda_ = bridge_interaction.lambda_(0) # For the initial time step: # time data_plot[k, 0] = t0 # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 while k < N: bridge_simulation.computeOneStep() #non_smooth_problem.display() data_plot[k, 0] = bridge_simulation.nextTime() # inductor voltage data_plot[k, 1] = x[0] # inductor current data_plot[k, 2] = x[1] # diode R1 current data_plot[k, 3] = y[0] # diode R1 voltage data_plot[k, 4] = -lambda_[0] # diode F2 voltage data_plot[k, 5] = -lambda_[1] # diode F1 current data_plot[k, 6] = lambda_[2] # resistor current data_plot[k, 7] = y[0] + lambda_[2] k += 1 bridge_simulation.nextStep() # # comparison with the reference file # ref = getMatrix( SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref"))) assert norm(data_plot - ref) < 1e-12 return ref, data_plot
C = [[-1., 0.]] D = [[Rvalue]] B = [[-1. / Cvalue], [0.]] LTIRCircuitRLCD = FirstOrderLinearTIR(C, B) LTIRCircuitRLCD.setDPtr(D) nslaw = ComplementarityConditionNSL(1) InterCircuitRLCD = Interaction(1, nslaw, LTIRCircuitRLCD, 1) # # Model # CircuitRLCD = Model(t0, T, Modeltitle) # add the dynamical system in the non smooth dynamical system CircuitRLCD.nonSmoothDynamicalSystem().insertDynamicalSystem(LSCircuitRLCD) # link the interaction and the dynamical system CircuitRLCD.nonSmoothDynamicalSystem().link(InterCircuitRLCD, LSCircuitRLCD) # # Simulation # # (1) OneStepIntegrators theta = 0.5 aOSI = EulerMoreauOSI(theta) aOSI.insertDynamicalSystem(LSCircuitRLCD)
def test_smc1(): from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \ TimeStepping, ZeroOrderHoldOSI, TD_EVENT from siconos.control.simulation import ControlManager from siconos.control.sensor import LinearSensor from siconos.control.controller import LinearSMCOT2 from numpy import eye, empty, zeros import numpy as np from math import ceil, sin # Derive our own version of FirstOrderLinearDS class MyFOLDS(FirstOrderLinearDS): def computeb(self, time): t = sin(50*time) # XXX fix this ! u = [t, -t] self.setb(u) # variable declaration ndof = 2 # Number of degrees of freedom of your system t0 = 0.0 # start time T = 1 # end time h = 1.0e-4 # time step for simulation hControl = 1.0e-2 # time step for control Xinit = 1.0 # initial position N = ceil((T-t0)/h + 10) # number of time steps outputSize = 4 # number of variable to store at each time step # Matrix declaration A = zeros((ndof, ndof)) x0 = [Xinit, -Xinit] Brel = np.array([[0], [1]]) sensorC = eye(ndof) sensorD = zeros((ndof, ndof)) Csurface = [[0, 1.0]] # Simple check if h > hControl: print("hControl must be bigger than h") exit(1) # Declaration of the Dynamical System processDS = MyFOLDS(x0, A) # XXX b is not automatically created ... # processDS.setb([0, 0]) # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretization processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI() process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(processSimulation) sens = LinearSensor(processDS, sensorC, sensorD) control.addSensorPtr(sens, tSensor) act = LinearSMCOT2(sens) act.setCsurface(Csurface) act.setB(Brel) control.addActuatorPtr(act, tActuator) # Initialization. process.initialize(processSimulation) control.initialize(process) # This is not working right now # eventsManager = s.eventsManager() # Matrix for data storage dataPlot = empty((3*(N+1), outputSize)) dataPlot[0, 0] = t0 dataPlot[0, 1] = processDS.x()[0] dataPlot[0, 2] = processDS.x()[1] dataPlot[0, 3] = act.u()[0] # Main loop k = 1 while processSimulation.hasNextEvent(): if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT: processSimulation.computeOneStep() dataPlot[k, 0] = processSimulation.nextTime() dataPlot[k, 1] = processDS.x()[0] dataPlot[k, 2] = processDS.x()[1] dataPlot[k, 3] = act.u()[0] k += 1 processSimulation.nextStep() # print processSimulation.nextTime() # Resize matrix dataPlot.resize(k, outputSize)
C = [[1.0, 0.0, 0.0]] D = [[0.0]] B = [[0.0], [0.0], [1.0]] LTIRRelayOscillator = FirstOrderLinearTIR(C, B) LTIRRelayOscillator.setDPtr(D) nslaw = RelayNSL(1) InterRelayOscillator = Interaction(nslaw, LTIRRelayOscillator) # # Model # RelayOscillator = Model(t0, T, Modeltitle) # add the dynamical system in the non smooth dynamical system myNSDS = NonSmoothDynamicalSystem() myNSDS.insertDynamicalSystem(LSRelayOscillator) # link the interaction and the dynamical system myNSDS.link(InterRelayOscillator, LSRelayOscillator) RelayOscillator.setNonSmoothDynamicalSystemPtr(myNSDS) # # Simulation # # (1) OneStepIntegrators