コード例 #1
0
def test_serialization4():
    from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \
        LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping

    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 10       # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = NewtonImpactNSL(e)
    relation = LagrangianLinearTIR(H)
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    first_bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    first_bouncingBall.setSimulation(s)
    first_bouncingBall.initialize()

    #
    # save and load data from xml and .dat
    #
    from siconos.io.io_base import save, load
    save(first_bouncingBall, "bouncingBall.xml")

    bouncingBall = load("bouncingBall.xml")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = q[0]
    dataPlot[0, 2] = v[0]
    dataPlot[0, 3] = p[0]
    dataPlot[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = q[0]
        dataPlot[k, 2] = v[0]
        dataPlot[k, 3] = p[0]
        dataPlot[k, 4] = lambda_[0]

        k += 1
        print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,
                                              "data/result.ref")))

    assert (norm(dataPlot - ref) < 1e-12)
コード例 #2
0
ファイル: ZhuravlevTwisting.py プロジェクト: stpua/siconos
myProcessRelation = ZhuravlevTwistingR(C, B)

myNslaw = RelayNSL(2)
myNslaw.display()

myProcessInteraction = Interaction(myNslaw, myProcessRelation)

filippov = NonSmoothDynamicalSystem(t0, T)
filippov.insertDynamicalSystem(process)
filippov.link(myProcessInteraction, process)

td = TimeDiscretisation(t0, h)
s = TimeStepping(filippov, td)

myIntegrator = EulerMoreauOSI(theta)
s.insertIntegrator(myIntegrator)

#TODO python <- SICONOS_RELAY_LEMKE
# access dparam

osnspb = Relay()
s.insertNonSmoothProblem(osnspb)
s.setComputeResiduY(True)
s.setComputeResiduR(True)
s.setNewtonMaxIteration(30)
s.setNewtonTolerance(1e-14)

# matrix to save data
dataPlot = empty((N + 1, 5))
control = empty((N + 1, ))
dataPlot[0, 0] = t0
コード例 #3
0
broadphase = SiconosBulletCollisionManager()

# insert a non smooth law for contactors id 0
broadphase.insertNonSmoothLaw(nslaw, 0, 0)

# The ground is a static object
# we give it a group contactor id : 0
scs = SiconosContactorSet()
scs.append(SiconosContactor(ground))
broadphase.insertStaticContactorSet(scs, groundOffset)

# (6) Simulation setup with (1) (2) (3) (4) (5)
simulation = TimeStepping(timedisc)
simulation.insertInteractionManager(broadphase)

simulation.insertIntegrator(osi)
simulation.insertNonSmoothProblem(osnspb)

# simulation initialization

bouncingBox.setSimulation(simulation)
bouncingBox.initialize()

# Get the values to be plotted
# ->saved in a matrix dataPlot

N = int((T - t0) / h)
dataPlot = zeros((N + 1, 4))

#
# numpy pointers on dense Siconos vectors
コード例 #4
0
# Declaration of the Dynamical System
processDS = FirstOrderLinearDS(x0, A)
processDS.setComputebFunction("RelayPlugin", "computeB")
# Model
process = Model(t0, T)
process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS)
# time discretisation
processTD = TimeDiscretisation(t0, h)
tSensor = TimeDiscretisation(t0, hControl)
tActuator = TimeDiscretisation(t0, hControl)
# Creation of the Simulation
processSimulation = TimeStepping(processTD, 0)
processSimulation.setName("plant simulation")
# Declaration of the integrator
processIntegrator = ZeroOrderHoldOSI(processDS)
processSimulation.insertIntegrator(processIntegrator)
# Actuator, Sensor & ControlManager
control = ControlManager(process)
sens = LinearSensor(tSensor, processDS, sensorC)
control.addSensorPtr(sens)
act = LinearSMCOT2(tActuator, processDS)
act.setCsurfacePtr(Csurface)
act.addSensorPtr(sens)
control.addActuatorPtr(act)

# Initialization
process.initialize(processSimulation)
control.initialize()
# This is not working right now
#eventsManager = s.eventsManager()
コード例 #5
0
def test_bouncing_ball1():

    from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \
        LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping

    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 10       # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = NewtonImpactNSL(e)
    relation = LagrangianLinearTIR(H)
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)
    OSI.insertDynamicalSystem(ball)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    bouncingBall.initialize(s)

    #
    # save and load data from xml and .dat
    #
    try:
        from siconos.io import save
        save(bouncingBall, "bouncingBall.xml")
        save(bouncingBall, "bouncingBall.bin")

    except:
        print("Warning : could not import save from siconos.io")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = q[0]
    dataPlot[0, 2] = v[0]
    dataPlot[0, 3] = p[0]
    dataPlot[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = q[0]
        dataPlot[k, 2] = v[0]
        dataPlot[k, 3] = p[0]
        dataPlot[k, 4] = lambda_[0]

        k += 1
        #print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref")))

    assert (norm(dataPlot - ref) < 1e-12)
コード例 #6
0
myProcessInteraction = Interaction(ninter, myNslaw,
        myProcessRelation)
myNSDS = NonSmoothDynamicalSystem()
myNSDS.insertDynamicalSystem(process)
myNSDS.link(myProcessInteraction,process)


filippov = Model(t0,T)
filippov.setNonSmoothDynamicalSystemPtr(myNSDS)

td = TimeDiscretisation(t0, h)
s = TimeStepping(td)

myIntegrator = EulerMoreauOSI(process, theta)
s.insertIntegrator(myIntegrator)


#TODO python <- SICONOS_RELAY_LEMKE
# access dparam

osnspb = Relay()
s.insertNonSmoothProblem(osnspb)
s.setComputeResiduY(True)
s.setComputeResiduR(True)

filippov.initialize(s);

# matrix to save data
dataPlot = empty((N+1,5))
control = empty((N+1,))
コード例 #7
0
ファイル: BouncingBallNETS.py プロジェクト: xhub/siconos
# Simulation
#

# (1) OneStepIntegrators
OSI = MoreauJeanOSI(theta)
OSI.insertDynamicalSystem(ball)

# (2) Time discretisation --
t = TimeDiscretisation(t0, h)

# (3) one step non smooth problem
osnspb = LCP()

# (4) Simulation setup with (1) (2) (3)
s = TimeStepping(t)
s.insertIntegrator(OSI)
s.insertNonSmoothProblem(osnspb)

# end of model definition

#
# computation
#

# simulation initialization
bouncingBall.initialize(s)

# the number of time steps
N = (T - t0) / h

# Get the values to be plotted
コード例 #8
0
# (1) OneStepIntegrators
OSI = MoreauJeanOSI(theta)

# (2) Time discretisation --
t = TimeDiscretisation(t0, h)

# (3) one step non smooth problem
osnspb = LCP()

# (4) Simulation setup with (1) (2) (3)
s = TimeStepping(t)
#s.setDisplayNewtonConvergence(True)
s.setNewtonTolerance(1e-10)
#s.setNewtonMaxIteration(1)
s.insertIntegrator(OSI)
s.insertNonSmoothProblem(osnspb)
model.setSimulation(s)
# end of model definition

#
# computation
#
# simulation initialization
model.initialize()

# Get the values to be plotted
# ->saved in a matrix dataPlot
dataPlot = np.empty((N + 1, 26))

#
コード例 #9
0
def test_smc1():
    from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \
        TimeStepping, ZeroOrderHoldOSI, TD_EVENT
    from siconos.control.simulation import ControlManager
    from siconos.control.sensor import LinearSensor
    from siconos.control.controller import LinearSMCOT2
    from numpy import eye, empty, zeros
    import numpy as np
    from math import ceil, sin

    # Derive our own version of FirstOrderLinearDS
    class MyFOLDS(FirstOrderLinearDS):
        def computeb(self, time):
            t = sin(50*time)
            # XXX fix this !
            u = [t, -t]
            self.setb(u)

    # variable declaration
    ndof = 2   # Number of degrees of freedom of your system
    t0 = 0.0   # start time
    T = 1    # end time
    h = 1.0e-4  # time step for simulation
    hControl = 1.0e-2  # time step for control
    Xinit = 1.0  # initial position
    N = ceil((T-t0)/h + 10)  # number of time steps
    outputSize = 4  # number of variable to store at each time step

    # Matrix declaration
    A = zeros((ndof, ndof))
    x0 = [Xinit, -Xinit]
    Brel = np.array([[0], [1]])
    sensorC = eye(ndof)
    sensorD = zeros((ndof, ndof))
    Csurface = [[0, 1.0]]

    # Simple check
    if h > hControl:
        print("hControl must be bigger than h")
        exit(1)

    # Declaration of the Dynamical System
    processDS = MyFOLDS(x0, A)
    # XXX b is not automatically created ...
#    processDS.setb([0, 0])
    # Model
    process = Model(t0, T)
    process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS)
    # time discretization
    processTD = TimeDiscretisation(t0, h)
    tSensor = TimeDiscretisation(t0, hControl)
    tActuator = TimeDiscretisation(t0, hControl)
    # Creation of the Simulation
    processSimulation = TimeStepping(processTD, 0)
    processSimulation.setName("plant simulation")
    # Declaration of the integrator
    processIntegrator = ZeroOrderHoldOSI()
    process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator)
    processSimulation.insertIntegrator(processIntegrator)
    # Actuator, Sensor & ControlManager
    control = ControlManager(processSimulation)
    sens = LinearSensor(processDS, sensorC, sensorD)

    control.addSensorPtr(sens, tSensor)
    act = LinearSMCOT2(sens)
    act.setCsurface(Csurface)
    act.setB(Brel)
    control.addActuatorPtr(act, tActuator)

    # Initialization.
    process.initialize(processSimulation)
    control.initialize(process)
    # This is not working right now
    # eventsManager = s.eventsManager()

    # Matrix for data storage
    dataPlot = empty((3*(N+1), outputSize))
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = processDS.x()[0]
    dataPlot[0, 2] = processDS.x()[1]
    dataPlot[0, 3] = act.u()[0]

    # Main loop
    k = 1
    while processSimulation.hasNextEvent():
        if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT:
            processSimulation.computeOneStep()
        dataPlot[k, 0] = processSimulation.nextTime()
        dataPlot[k, 1] = processDS.x()[0]
        dataPlot[k, 2] = processDS.x()[1]
        dataPlot[k, 3] = act.u()[0]
        k += 1
        processSimulation.nextStep()
    #    print processSimulation.nextTime()
    # Resize matrix
    dataPlot.resize(k, outputSize)