def test_serialization4(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # first_bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization first_bouncingBall.setSimulation(s) first_bouncingBall.initialize() # # save and load data from xml and .dat # from siconos.io.io_base import save, load save(first_bouncingBall, "bouncingBall.xml") bouncingBall = load("bouncingBall.xml") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
myProcessRelation = ZhuravlevTwistingR(C, B) myNslaw = RelayNSL(2) myNslaw.display() myProcessInteraction = Interaction(myNslaw, myProcessRelation) filippov = NonSmoothDynamicalSystem(t0, T) filippov.insertDynamicalSystem(process) filippov.link(myProcessInteraction, process) td = TimeDiscretisation(t0, h) s = TimeStepping(filippov, td) myIntegrator = EulerMoreauOSI(theta) s.insertIntegrator(myIntegrator) #TODO python <- SICONOS_RELAY_LEMKE # access dparam osnspb = Relay() s.insertNonSmoothProblem(osnspb) s.setComputeResiduY(True) s.setComputeResiduR(True) s.setNewtonMaxIteration(30) s.setNewtonTolerance(1e-14) # matrix to save data dataPlot = empty((N + 1, 5)) control = empty((N + 1, )) dataPlot[0, 0] = t0
broadphase = SiconosBulletCollisionManager() # insert a non smooth law for contactors id 0 broadphase.insertNonSmoothLaw(nslaw, 0, 0) # The ground is a static object # we give it a group contactor id : 0 scs = SiconosContactorSet() scs.append(SiconosContactor(ground)) broadphase.insertStaticContactorSet(scs, groundOffset) # (6) Simulation setup with (1) (2) (3) (4) (5) simulation = TimeStepping(timedisc) simulation.insertInteractionManager(broadphase) simulation.insertIntegrator(osi) simulation.insertNonSmoothProblem(osnspb) # simulation initialization bouncingBox.setSimulation(simulation) bouncingBox.initialize() # Get the values to be plotted # ->saved in a matrix dataPlot N = int((T - t0) / h) dataPlot = zeros((N + 1, 4)) # # numpy pointers on dense Siconos vectors
# Declaration of the Dynamical System processDS = FirstOrderLinearDS(x0, A) processDS.setComputebFunction("RelayPlugin", "computeB") # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretisation processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI(processDS) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(process) sens = LinearSensor(tSensor, processDS, sensorC) control.addSensorPtr(sens) act = LinearSMCOT2(tActuator, processDS) act.setCsurfacePtr(Csurface) act.addSensorPtr(sens) control.addActuatorPtr(act) # Initialization process.initialize(processSimulation) control.initialize() # This is not working right now #eventsManager = s.eventsManager()
def test_bouncing_ball1(): from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \ LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping from numpy import array, eye, empty t0 = 0 # start time T = 10 # end time h = 0.005 # time step r = 0.1 # ball radius g = 9.81 # gravity m = 1 # ball mass e = 0.9 # restitution coeficient theta = 0.5 # theta scheme # # dynamical system # x = array([1, 0, 0]) # initial position v = array([0, 0, 0]) # initial velocity mass = eye(3) # mass matrix mass[2, 2] = 3./5 * r * r # the dynamical system ball = LagrangianLinearTIDS(x, v, mass) # set external forces weight = array([-m * g, 0, 0]) ball.setFExtPtr(weight) # # Interactions # # ball-floor H = array([[1, 0, 0]]) nslaw = NewtonImpactNSL(e) relation = LagrangianLinearTIR(H) inter = Interaction(1, nslaw, relation) # # Model # bouncingBall = Model(t0, T) # add the dynamical system to the non smooth dynamical system bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball) # link the interaction and the dynamical system bouncingBall.nonSmoothDynamicalSystem().link(inter, ball) # # Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # # save and load data from xml and .dat # try: from siconos.io import save save(bouncingBall, "bouncingBall.xml") save(bouncingBall, "bouncingBall.bin") except: print("Warning : could not import save from siconos.io") # the number of time steps N = (T-t0)/h+1 # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = empty((N, 5)) # # numpy pointers on dense Siconos vectors # q = ball.q() v = ball.velocity() p = ball.p(1) lambda_ = inter.lambda_(1) # # initial data # dataPlot[0, 0] = t0 dataPlot[0, 1] = q[0] dataPlot[0, 2] = v[0] dataPlot[0, 3] = p[0] dataPlot[0, 4] = lambda_[0] k = 1 # time loop while(s.hasNextEvent()): s.computeOneStep() dataPlot[k, 0] = s.nextTime() dataPlot[k, 1] = q[0] dataPlot[k, 2] = v[0] dataPlot[k, 3] = p[0] dataPlot[k, 4] = lambda_[0] k += 1 #print(s.nextTime()) s.nextStep() # # comparison with the reference file # from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref"))) assert (norm(dataPlot - ref) < 1e-12)
myProcessInteraction = Interaction(ninter, myNslaw, myProcessRelation) myNSDS = NonSmoothDynamicalSystem() myNSDS.insertDynamicalSystem(process) myNSDS.link(myProcessInteraction,process) filippov = Model(t0,T) filippov.setNonSmoothDynamicalSystemPtr(myNSDS) td = TimeDiscretisation(t0, h) s = TimeStepping(td) myIntegrator = EulerMoreauOSI(process, theta) s.insertIntegrator(myIntegrator) #TODO python <- SICONOS_RELAY_LEMKE # access dparam osnspb = Relay() s.insertNonSmoothProblem(osnspb) s.setComputeResiduY(True) s.setComputeResiduR(True) filippov.initialize(s); # matrix to save data dataPlot = empty((N+1,5)) control = empty((N+1,))
# Simulation # # (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) OSI.insertDynamicalSystem(ball) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) # end of model definition # # computation # # simulation initialization bouncingBall.initialize(s) # the number of time steps N = (T - t0) / h # Get the values to be plotted
# (1) OneStepIntegrators OSI = MoreauJeanOSI(theta) # (2) Time discretisation -- t = TimeDiscretisation(t0, h) # (3) one step non smooth problem osnspb = LCP() # (4) Simulation setup with (1) (2) (3) s = TimeStepping(t) #s.setDisplayNewtonConvergence(True) s.setNewtonTolerance(1e-10) #s.setNewtonMaxIteration(1) s.insertIntegrator(OSI) s.insertNonSmoothProblem(osnspb) model.setSimulation(s) # end of model definition # # computation # # simulation initialization model.initialize() # Get the values to be plotted # ->saved in a matrix dataPlot dataPlot = np.empty((N + 1, 26)) #
def test_smc1(): from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \ TimeStepping, ZeroOrderHoldOSI, TD_EVENT from siconos.control.simulation import ControlManager from siconos.control.sensor import LinearSensor from siconos.control.controller import LinearSMCOT2 from numpy import eye, empty, zeros import numpy as np from math import ceil, sin # Derive our own version of FirstOrderLinearDS class MyFOLDS(FirstOrderLinearDS): def computeb(self, time): t = sin(50*time) # XXX fix this ! u = [t, -t] self.setb(u) # variable declaration ndof = 2 # Number of degrees of freedom of your system t0 = 0.0 # start time T = 1 # end time h = 1.0e-4 # time step for simulation hControl = 1.0e-2 # time step for control Xinit = 1.0 # initial position N = ceil((T-t0)/h + 10) # number of time steps outputSize = 4 # number of variable to store at each time step # Matrix declaration A = zeros((ndof, ndof)) x0 = [Xinit, -Xinit] Brel = np.array([[0], [1]]) sensorC = eye(ndof) sensorD = zeros((ndof, ndof)) Csurface = [[0, 1.0]] # Simple check if h > hControl: print("hControl must be bigger than h") exit(1) # Declaration of the Dynamical System processDS = MyFOLDS(x0, A) # XXX b is not automatically created ... # processDS.setb([0, 0]) # Model process = Model(t0, T) process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS) # time discretization processTD = TimeDiscretisation(t0, h) tSensor = TimeDiscretisation(t0, hControl) tActuator = TimeDiscretisation(t0, hControl) # Creation of the Simulation processSimulation = TimeStepping(processTD, 0) processSimulation.setName("plant simulation") # Declaration of the integrator processIntegrator = ZeroOrderHoldOSI() process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator) processSimulation.insertIntegrator(processIntegrator) # Actuator, Sensor & ControlManager control = ControlManager(processSimulation) sens = LinearSensor(processDS, sensorC, sensorD) control.addSensorPtr(sens, tSensor) act = LinearSMCOT2(sens) act.setCsurface(Csurface) act.setB(Brel) control.addActuatorPtr(act, tActuator) # Initialization. process.initialize(processSimulation) control.initialize(process) # This is not working right now # eventsManager = s.eventsManager() # Matrix for data storage dataPlot = empty((3*(N+1), outputSize)) dataPlot[0, 0] = t0 dataPlot[0, 1] = processDS.x()[0] dataPlot[0, 2] = processDS.x()[1] dataPlot[0, 3] = act.u()[0] # Main loop k = 1 while processSimulation.hasNextEvent(): if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT: processSimulation.computeOneStep() dataPlot[k, 0] = processSimulation.nextTime() dataPlot[k, 1] = processDS.x()[0] dataPlot[k, 2] = processDS.x()[1] dataPlot[k, 3] = act.u()[0] k += 1 processSimulation.nextStep() # print processSimulation.nextTime() # Resize matrix dataPlot.resize(k, outputSize)