コード例 #1
0
ファイル: test_conv.py プロジェクト: jschoormans/sigpy
    def test_convolve_filter_adjoint_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        data = xp.ones([1, 3], dtype=dtype)
                        output = xp.ones([1, 5], dtype=dtype)
                        filt_shape = [1, 3]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode))
                        npt.assert_allclose(filt, [[3, 3, 3]], atol=1e-5)

                        data = xp.ones([1, 3], dtype=dtype)
                        output = xp.ones([1, 4], dtype=dtype)
                        filt_shape = [1, 2]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode))
                        npt.assert_allclose(filt, [[3, 3]], atol=1e-5)

                        data = xp.ones([1, 1, 3], dtype=dtype)
                        output = xp.ones([2, 1, 5], dtype=dtype)
                        filt_shape = [2, 1, 1, 3]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode,
                                                         multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(filt,
                                            [[[[3, 3, 3]]], [[[3, 3, 3]]]],
                                            atol=1e-5)

                        data = xp.ones([1, 1, 3], dtype=dtype)
                        output = xp.ones([2, 1, 3], dtype=dtype)
                        filt_shape = [2, 1, 1, 3]
                        strides = [1, 2]
                        filt = backend.to_device(
                            conv.convolve_filter_adjoint(output,
                                                         data,
                                                         filt_shape,
                                                         mode=mode,
                                                         strides=strides,
                                                         multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(filt,
                                            [[[[2, 1, 2]]], [[[2, 1, 2]]]],
                                            atol=1e-5)
コード例 #2
0
    def test_convolve_adjoint_input_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    y = xp.ones([1, 5], dtype=dtype)
                    W = xp.ones([1, 3], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode), backend.cpu_device)
                    npt.assert_allclose(x, [[3, 3, 3]], atol=1e-5)

                    y = xp.ones([1, 4], dtype=dtype)
                    W = xp.ones([1, 2], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(x, [[2, 2, 2]], atol=1e-5)

                    y = xp.ones([2, 1, 5], dtype=dtype)
                    W = xp.ones([2, 1, 3], dtype=dtype)
                    x = backend.to_device(conv.convolve_adjoint_input(W, y, mode=mode,
                                                                   output_multi_channel=True),
                                       backend.cpu_device)
                    npt.assert_allclose(x, [[6, 6, 6]], atol=1e-5)
コード例 #3
0
ファイル: test_conv.py プロジェクト: mikgroup/sigpy
    def test_convolve_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for D in [1, 2, 3]:
            for device in devices:
                xp = device.xp
                with device:
                    for dtype in dtypes:
                        with self.subTest(D=D, dtype=dtype, device=device):
                            data = util.dirac([3] + [1] * (D - 1),
                                              device=device, dtype=dtype)
                            filt = xp.ones([3] + [1] * (D - 1), dtype=dtype)
                            output = backend.to_device(conv.convolve(
                                data, filt, mode=mode))
                            npt.assert_allclose(
                                output,
                                np.ones([1] * D), atol=1e-5)

                            data = util.dirac([3] + [1] * (D - 1),
                                              device=device, dtype=dtype)
                            filt = xp.ones([2] + [1] * (D - 1), dtype=dtype)
                            output = backend.to_device(conv.convolve(
                                data, filt, mode=mode))
                            npt.assert_allclose(
                                output,
                                np.ones([2] + [1] * (D - 1)), atol=1e-5)

                            data = util.dirac([1, 3] + [1] * (D - 1),
                                              device=device,
                                              dtype=dtype)
                            filt = xp.ones([2, 1, 3] + [1] * (D - 1),
                                           dtype=dtype)
                            output = backend.to_device(
                                conv.convolve(data, filt,
                                              mode=mode,
                                              multi_channel=True),
                                backend.cpu_device)
                            npt.assert_allclose(
                                output,
                                np.ones([2, 1] + [1] * (D - 1)),
                                atol=1e-5)

                            data = util.dirac([1, 3] + [1] * (D - 1),
                                              device=device,
                                              dtype=dtype)
                            filt = xp.ones([2, 1, 3] + [1] * (D - 1),
                                           dtype=dtype)
                            strides = [2] + [1] * (D - 1)
                            output = backend.to_device(
                                conv.convolve(data, filt,
                                              mode=mode, strides=strides,
                                              multi_channel=True),
                                backend.cpu_device)
                            npt.assert_allclose(
                                output,
                                np.ones([2, 1] + [1] * (D - 1)),
                                atol=1e-5)
コード例 #4
0
    def test_convolve_adjoint_filter_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        ndim = 2
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    x = xp.ones([1, 3], dtype=dtype)
                    y = xp.ones([1, 1], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[1, 1, 1]], atol=1e-5)

                    x = xp.ones([1, 3], dtype=dtype)
                    y = xp.ones([1, 2], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[2, 2]], atol=1e-5)

                    x = xp.ones([1, 1, 3], dtype=dtype)
                    y = xp.ones([2, 1, 1], dtype=dtype)
                    W = backend.to_device(conv.convolve_adjoint_filter(x, y, ndim, mode=mode,
                                                                    output_multi_channel=True),
                                       backend.cpu_device)
                    npt.assert_allclose(W, [[[1, 1, 1]],
                                            [[1, 1, 1]]], atol=1e-5)
コード例 #5
0
    def test_convolve_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            
        for device in devices:
            xp = device.xp
            with device:
                for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([1, 3], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode), backend.cpu_device)
                    npt.assert_allclose(y, [[0, 1, 1, 1, 0]], atol=1e-5)

                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([1, 2], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode), backend.cpu_device)
                    npt.assert_allclose(y, [[0, 1, 1, 0]], atol=1e-5)

                    x = util.dirac([1, 3], device=device, dtype=dtype)
                    W = xp.ones([2, 1, 3], dtype=dtype)
                    y = backend.to_device(conv.convolve(x, W, mode=mode,
                                                     output_multi_channel=True), backend.cpu_device)
                    npt.assert_allclose(y, [[[0, 1, 1, 1, 0]],
                                            [[0, 1, 1, 1, 0]]], atol=1e-5)
コード例 #6
0
def convolve(data, filt, mode='full', strides=None, multi_channel=False):
    r"""Convolution that supports multi-dimensional and multi-channel inputs.

    This function follows the signal processing definition of convolution.

    Args:
        data (array): data array of shape:
            :math:`[..., m_1, ..., m_D]` if multi_channel is False,
            :math:`[..., c_i, m_1, ..., m_D]` otherwise.
        filt (array): filter array of shape:
            :math:`[n_1, ..., n_D]` if multi_channel is False
            :math:`[c_o, c_i, n_1, ..., n_D]` otherwise.
        mode (str): {'full', 'valid'}.
        strides (None or tuple of ints): convolution strides of length D.
        multi_channel (bool): specify if input/output has multiple channels.

    Returns:
        array: output array of shape:
            :math:`[..., p_1, ..., p_D]` if multi_channel is False,
            :math:`[..., c_o, p_1, ..., p_D]` otherwise.

    """
    device = backend.get_device(data)
    filt = backend.to_device(filt, device)
    with device:
        filt = filt.astype(data.dtype, copy=False)

    if device == backend.cpu_device:
        output = _convolve(data,
                           filt,
                           mode=mode,
                           strides=strides,
                           multi_channel=multi_channel)
    else:  # pragma: no cover
        if config.cudnn_enabled:
            if np.issubdtype(data.dtype, np.floating):
                output = _convolve_cuda(data,
                                        filt,
                                        mode=mode,
                                        strides=strides,
                                        multi_channel=multi_channel)
            else:
                output = _complex(_convolve_cuda,
                                  data,
                                  filt,
                                  mode=mode,
                                  strides=strides,
                                  multi_channel=multi_channel)
        else:
            data = backend.to_device(data)
            filt = backend.to_device(filt)
            output = _convolve_data_adjoint(data,
                                            output,
                                            mode=mode,
                                            strides=strides,
                                            multi_channel=multi_channel)
            output = backend.to_device(output, device)

    return output
コード例 #7
0
    def _apply(self, input):
        device = backend.get_device(input)
        coord = backend.to_device(self.coord, device)
        kernel = backend.to_device(self.kernel, device)

        with device:
            return interp.gridding(input, self.oshape, self.width, kernel,
                                   coord)
コード例 #8
0
ファイル: test_conv.py プロジェクト: jschoormans/sigpy
    def test_convolve_data_adjoint_valid(self):
        mode = 'valid'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        output = xp.ones([1, 1], dtype=dtype)
                        filt = xp.ones([1, 3], dtype=dtype)
                        data_shape = [1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode))
                        npt.assert_allclose(data, [[1, 1, 1]], atol=1e-5)

                        output = xp.ones([1, 2], dtype=dtype)
                        filt = xp.ones([1, 2], dtype=dtype)
                        data_shape = [1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode))
                        npt.assert_allclose(data, [[1, 2, 1]], atol=1e-5)

                        output = xp.ones([2, 1, 1], dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        data_shape = [1, 1, 3]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode,
                                                       multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(data, [[[2, 2, 2]]], atol=1e-5)

                        output = xp.ones([2, 1, 1], dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        data_shape = [1, 1, 4]
                        strides = [1, 2]
                        data = backend.to_device(
                            conv.convolve_data_adjoint(output,
                                                       filt,
                                                       data_shape,
                                                       mode=mode,
                                                       strides=strides,
                                                       multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(data, [[[2, 2, 2, 0]]], atol=1e-5)
コード例 #9
0
ファイル: linop.py プロジェクト: ShannonZ/sigpy
    def _apply(self, input):

        device = backend.get_device(input)
        coord = backend.to_device(self.coord, device)
        kernel = backend.to_device(self.kernel, device)
        shift = backend.to_device(self.shift, device)

        with device:
            return interp.interpolate(input, self.width, kernel,
                                      coord * self.scale + shift)
コード例 #10
0
def _scale_coord(coord, shape, oversamp):
    ndim = coord.shape[-1]
    device = backend.get_device(coord)
    scale = backend.to_device(
        [_get_ugly_number(oversamp * i) / i for i in shape[-ndim:]], device)
    shift = backend.to_device(
        [_get_ugly_number(oversamp * i) // 2 for i in shape[-ndim:]], device)

    with device:
        coord = scale * coord + shift

    return coord
コード例 #11
0
ファイル: test_conv.py プロジェクト: jschoormans/sigpy
    def test_convolve_full(self):
        mode = 'full'
        devices = [backend.cpu_device]
        if config.cupy_enabled:
            devices.append(backend.Device(0))
            dtypes = [np.float32, np.float64, np.complex64, np.complex128]

        for device in devices:
            xp = device.xp
            with device:
                for dtype in dtypes:
                    with self.subTest(dtype=dtype, device=device):
                        data = util.dirac([1, 3], device=device, dtype=dtype)
                        filt = xp.ones([1, 3], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data, filt, mode=mode))
                        npt.assert_allclose(output, [[0, 1, 1, 1, 0]],
                                            atol=1e-5)

                        data = util.dirac([1, 3], device=device, dtype=dtype)
                        filt = xp.ones([1, 2], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data, filt, mode=mode))
                        npt.assert_allclose(output, [[0, 1, 1, 0]], atol=1e-5)

                        data = util.dirac([1, 1, 3],
                                          device=device,
                                          dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        output = backend.to_device(
                            conv.convolve(data,
                                          filt,
                                          mode=mode,
                                          multi_channel=True),
                            backend.cpu_device)
                        npt.assert_allclose(
                            output, [[[0, 1, 1, 1, 0]], [[0, 1, 1, 1, 0]]],
                            atol=1e-5)

                        data = util.dirac([1, 1, 3],
                                          device=device,
                                          dtype=dtype)
                        filt = xp.ones([2, 1, 1, 3], dtype=dtype)
                        strides = [1, 2]
                        output = backend.to_device(
                            conv.convolve(data,
                                          filt,
                                          mode=mode,
                                          strides=strides,
                                          multi_channel=True))
                        npt.assert_allclose(output, [[[0, 1, 0]], [[0, 1, 0]]],
                                            atol=1e-5)
コード例 #12
0
ファイル: linop.py プロジェクト: ShannonZ/sigpy
 def _apply(self, input):
     data = backend.to_device(self.data, backend.get_device(input))
     return conv.convolve(data,
                          input,
                          mode=self.mode,
                          strides=self.strides,
                          multi_channel=self.multi_channel)
コード例 #13
0
 def _apply(self, input):
     device = backend.get_device(input)
     with device:
         coord = backend.to_device(self.coord, device)
         return interp.interpolate(input, coord,
                                   kernel=self.kernel,
                                   width=self.width, param=self.param)
コード例 #14
0
 def _apply(self, input):
     device = backend.get_device(input)
     filt = backend.to_device(self.filt, device)
     with device:
         return conv.convolve(input, filt, mode=self.mode,
                              strides=self.strides,
                              multi_channel=self.multi_channel)
コード例 #15
0
ファイル: linop.py プロジェクト: zhufengGNSS/sigpy
 def _apply(self, input):
     device = backend.get_device(input)
     with device:
         coord = backend.to_device(self.coord, device)
         return fourier.nufft_adjoint(
             input, coord, self.oshape,
             oversamp=self.oversamp, width=self.width)
コード例 #16
0
def soft_thresh(lamda, input):
    r"""Soft threshold.

    Performs:

    .. math::
        (| x | - \lambda)_+  \text{sgn}(x)

    Args:
        lamda (float, or array): Threshold parameter.
        input (array)

    Returns:
        array: soft-thresholded result.

    """
    device = backend.get_device(input)
    xp = device.xp
    if xp == np:
        return _soft_thresh(lamda, input)
    else:  # pragma: no cover
        if np.isscalar(lamda):
            lamda = backend.to_device(lamda, device)

        return _soft_thresh_cuda(lamda, input)
コード例 #17
0
 def _apply(self, input):
     device = backend.get_device(input)
     data = backend.to_device(self.data, device)
     with device:
         return conv.convolve_filter_adjoint(
             input, data, self.oshape,
             mode=self.mode, strides=self.strides,
             multi_channel=self.multi_channel)
コード例 #18
0
ファイル: util.py プロジェクト: jtamir/sigpy
def axpy(y, a, x):
    """Compute y = a * x + y.

    Args:
        y (array): Output array.
        a (scalar): Input scalar.
        x (array): Input array.

    """
    device = backend.get_device(x)
    x = backend.to_device(x, device)
    a = backend.to_device(a, device)

    with device:
        if device == backend.cpu_device:
            _axpy(y, a, x, out=y)
        else:
            _axpy_cuda(y, a, x)
コード例 #19
0
def xpay(y, a, x):
    """Compute y = x + a * y.

    Args:
        y (array): Output array.
        a (scalar): Input scalar.
        x (array): Input array.
    """

    device = backend.get_device(y)
    x = backend.to_device(x, device)
    a = backend.to_device(a, device)

    with device:
        if device == backend.cpu_device:
            _xpay(y, a, x, out=y)
        else:
            _xpay_cuda(a, x, y)
コード例 #20
0
ファイル: linop.py プロジェクト: ShannonZ/sigpy
    def _apply(self, input):
        device = backend.get_device(input)
        xp = device.xp
        mat = backend.to_device(self.mat, device)
        with device:
            if self.adjoint:
                mat = xp.conj(mat).swapaxes(-1, -2)

            return xp.matmul(input, mat)
コード例 #21
0
def nufft(input, coord, oversamp=1.25, width=4.0, n=128):
    """Non-uniform Fast Fourier Transform.

    Args:
        input (array): input signal domain array of shape
            (..., n_{ndim - 1}, ..., n_1, n_0),
            where ndim is specified by coord.shape[-1]. The nufft
            is applied on the last ndim axes, and looped over
            the remaining axes.
        coord (array): Fourier domain coordinate array of shape (..., ndim).
            ndim determines the number of dimensions to apply the nufft.
            coord[..., i] should be scaled to have its range between
            -n_i // 2, and n_i // 2.
        oversamp (float): oversampling factor.
        width (float): interpolation kernel full-width in terms of
            oversampled grid.
        n (int): number of sampling points of the interpolation kernel.

    Returns:
        array: Fourier domain data of shape
            input.shape[:-ndim] + coord.shape[:-1].

    References:
        Fessler, J. A., & Sutton, B. P. (2003).
        Nonuniform fast Fourier transforms using min-max interpolation
        IEEE Transactions on Signal Processing, 51(2), 560-574.
        Beatty, P. J., Nishimura, D. G., & Pauly, J. M. (2005).
        Rapid gridding reconstruction with a minimal oversampling ratio.
        IEEE transactions on medical imaging, 24(6), 799-808.

    """
    device = backend.get_device(input)
    ndim = coord.shape[-1]
    beta = np.pi * (((width / oversamp) * (oversamp - 0.5))**2 - 0.8)**0.5
    os_shape = _get_oversamp_shape(input.shape, ndim, oversamp)

    with device:
        output = input.copy()

        # Apodize
        _apodize(output, ndim, oversamp, width, beta)

        # Zero-pad
        output /= util.prod(input.shape[-ndim:])**0.5
        output = util.resize(output, os_shape)

        # FFT
        output = fft(output, axes=range(-ndim, 0), norm=None)

        # Interpolate
        coord = _scale_coord(backend.to_device(
            coord, device), input.shape, oversamp)
        kernel = _get_kaiser_bessel_kernel(n, width, beta, coord.dtype, device)
        output = interp.interpolate(output, width, kernel, coord)

        return output
コード例 #22
0
def nufft_adjoint(input, coord, oshape=None, oversamp=1.25, width=4.0, n=128):
    """Adjoint non-uniform Fast Fourier Transform.

    Args:
        input (array): input Fourier domain array of shape
            (...) + coord.shape[:-1]. That is, the last dimensions
            of input must match the first dimensions of coord.
            The nufft_adjoint is applied on the last coord.ndim - 1 axes,
            and looped over the remaining axes.
        coord (array): Fourier domain coordinate array of shape (..., ndim).
            ndim determines the number of dimension to apply nufft adjoint.
            coord[..., i] should be scaled to have its range between
            -n_i // 2, and n_i // 2.
        oshape (tuple of ints): output shape of the form
            (..., n_{ndim - 1}, ..., n_1, n_0).
        oversamp (float): oversampling factor.
        width (float): interpolation kernel full-width in terms of
            oversampled grid.
        n (int): number of sampling points of the interpolation kernel.

    Returns:
        array: signal domain array with shape specified by oshape.

    See Also:
        :func:`sigpy.nufft.nufft`

    """
    device = backend.get_device(input)
    ndim = coord.shape[-1]
    beta = np.pi * (((width / oversamp) * (oversamp - 0.5))**2 - 0.8)**0.5
    if oshape is None:
        oshape = list(input.shape[:-coord.ndim + 1]) + estimate_shape(coord)
    else:
        oshape = list(oshape)

    os_shape = _get_oversamp_shape(oshape, ndim, oversamp)

    with device:
        # Gridding
        coord = _scale_coord(backend.to_device(
            coord, device), oshape, oversamp)
        kernel = _get_kaiser_bessel_kernel(n, width, beta, coord.dtype, device)
        output = interp.gridding(input, os_shape, width, kernel, coord)

        # IFFT
        output = ifft(output, axes=range(-ndim, 0), norm=None)

        # Crop
        output = util.resize(output, oshape)
        output *= util.prod(os_shape[-ndim:]) / util.prod(oshape[-ndim:])**0.5

        # Apodize
        _apodize(output, ndim, oversamp, width, beta)

        return output
コード例 #23
0
ファイル: util.py プロジェクト: jtamir/sigpy
def asscalar(input):
    """Returns input array as scalar.

    Args:
        input (array): Input array

    Returns:
        scalar.

    """
    return np.asscalar(backend.to_device(input, backend.cpu_device))
コード例 #24
0
def fwt(input, wave_name='db4', axes=None, level=None):
    """Forward wavelet transform.

    Args:
        input (array): Input array.
        axes (None or tuple of int): Axes to perform wavelet transform.
        wave_name (str): Wavelet name.
        level (None or int): Number of wavelet levels.
    """
    device = backend.get_device(input)
    input = backend.to_device(input, backend.cpu_device)

    zshape = [((i + 1) // 2) * 2 for i in input.shape]
    zinput = util.resize(input, zshape)

    coeffs = pywt.wavedecn(zinput, wave_name, mode='zero', axes=axes, level=level)
    output, _ = pywt.coeffs_to_array(coeffs, axes=axes)

    output = backend.to_device(output, device)
    return output
コード例 #25
0
def iwt(input, oshape, coeff_slices, wave_name='db4', axes=None, level=None):
    """Inverse wavelet transform.

    Args:
        input (array): Input array.
        oshape (tuple of ints): Output shape.
        coeff_slices (list of slice): Slices to split coefficients.
        axes (None or tuple of int): Axes to perform wavelet transform.
        wave_name (str): Wavelet name.
        level (None or int): Number of wavelet levels.
    """
    device = backend.get_device(input)
    input = backend.to_device(input, backend.cpu_device)

    input = pywt.array_to_coeffs(input, coeff_slices, output_format='wavedecn')
    output = pywt.waverecn(input, wave_name, mode='zero', axes=axes)
    output = util.resize(output, oshape)

    output = backend.to_device(output, device)
    return output
コード例 #26
0
ファイル: app.py プロジェクト: jonbmartin/sigpy-rf
    def _summarize(self):
        if self.save_objective_values:
            self.objective_values.append(self.objective())

        if self.show_pbar:
            if self.save_objective_values:
                self.pbar.set_postfix(
                    obj='{0:.2E}'.format(self.objective_values[-1]))
            else:
                self.pbar.set_postfix(resid='{0:.2E}'.format(
                    backend.to_device(self.alg.resid, backend.cpu_device)))
コード例 #27
0
ファイル: linop.py プロジェクト: jychengmri/sigpy
    def _apply(self, input):
        device = backend.get_device(input)
        x = backend.to_device(self.x, backend.get_device(input))
        with device:
            x = x.astype(input.dtype, copy=False)

        return conv.convolve(x,
                             input,
                             mode=self.mode,
                             input_multi_channel=self.input_multi_channel,
                             output_multi_channel=self.output_multi_channel)
コード例 #28
0
ファイル: linop.py プロジェクト: jychengmri/sigpy
    def _apply(self, input):
        device = backend.get_device(input)
        W = backend.to_device(self.W, backend.get_device(input))
        with device:
            W = W.astype(input.dtype, copy=False)

        return conv.convolve_adjoint_input(
            W,
            input,
            mode=self.mode,
            input_multi_channel=self.input_multi_channel,
            output_multi_channel=self.output_multi_channel)
コード例 #29
0
ファイル: interp.py プロジェクト: suiy02/sigpy
def interpolate(input, width, kernel, coord):
    """Interpolation from array to points specified by coordinates.

    Args:
        input (array): Input array of shape [..., ny, nx]
        width (float): Interpolation kernel width.
        kernel (array): Interpolation kernel.
        coord (array): Coordinate array of shape [..., ndim]

    Returns:
        output (array): Output array of coord.shape[:-1]

    """
    ndim = coord.shape[-1]

    batch_shape = input.shape[:-ndim]
    batch_size = util.prod(batch_shape)

    pts_shape = coord.shape[:-1]
    npts = util.prod(pts_shape)

    device = backend.get_device(input)
    xp = device.xp
    isreal = np.issubdtype(input.dtype, np.floating)
    coord = backend.to_device(coord, device)
    kernel = backend.to_device(kernel, device)

    with device:
        input = input.reshape([batch_size] + list(input.shape[-ndim:]))
        coord = coord.reshape([npts, ndim])
        output = xp.zeros([batch_size, npts], dtype=input.dtype)

        _interpolate = _select_interpolate(ndim, npts, device, isreal)
        if device == backend.cpu_device:
            _interpolate(output, input, width, kernel, coord)
        else:  # pragma: no cover
            _interpolate(input, width, kernel, coord, output, size=npts)

        return output.reshape(batch_shape + pts_shape)
コード例 #30
0
def xpay(y, a, x):
    """Compute y = x + a * y.

    Args:
        y (array): Output array.
        a (scalar or array): Input scalar.
        x (array): Input array.
    """
    device = backend.get_device(y)
    xp = device.xp

    if xp == np:
        _xpay(y, a, x, out=y)
    else:
        if np.isscalar(a):
            a = backend.to_device(a, device)

        _xpay_cuda(a, x, y)