コード例 #1
0
        def test_shepp_logan_SenseRecon_with_comm(self):
            img, mps, ksp = self.shepp_logan_setup()
            lamda = 0
            comm = sp.Communicator()
            ksp = ksp[comm.rank::comm.size]
            mps = mps[comm.rank::comm.size]

            img_rec = app.SenseRecon(
                ksp, mps, lamda, comm=comm, alg_name='ConjugateGradient',
                show_pbar=False).run()
            npt.assert_allclose(img, img_rec, atol=1e-3, rtol=1e-3)

            img_rec = app.SenseRecon(
                ksp, mps, lamda, alg_name='GradientMethod',
                show_pbar=False).run()
            npt.assert_allclose(img, img_rec, atol=1e-3, rtol=1e-3)

            img_rec = app.SenseRecon(
                ksp,
                mps,
                lamda,
                alg_name='PrimalDualHybridGradient',
                max_iter=1000,
                show_pbar=False).run()
            npt.assert_allclose(img, img_rec, atol=1e-3, rtol=1e-3)
コード例 #2
0
def jsens_calib(ksp, coord, dcf, ishape, device = sp.Device(-1)):
    img_s = nft.nufft_adj([ksp],[coord],[dcf],device = device,ishape = ishape,id_channel =True)
    ksp = sp.fft(input=np.asarray(img_s[0]),axes=(1,2,3))
    mps = mr.app.JsenseRecon(ksp,
                             mps_ker_width=12,
                             ksp_calib_width=32,
                             lamda=0,
                             device=device,
                             comm=sp.Communicator(),
                             max_iter=10,
                             max_inner_iter=10).run()
    return mps
コード例 #3
0
ファイル: test_linop.py プロジェクト: zhufengGNSS/sigpy
        def test_sense_model_with_comm(self):
            img_shape = [16, 16]
            mps_shape = [8, 16, 16]
            comm = sp.Communicator()

            img = sp.randn(img_shape, dtype=np.complex)
            mps = sp.randn(mps_shape, dtype=np.complex)
            comm.allreduce(img)
            comm.allreduce(mps)
            ksp = sp.fft(img * mps, axes=[-1, -2])

            A = linop.Sense(mps[comm.rank::comm.size], comm=comm)

            npt.assert_allclose(A.H(ksp[comm.rank::comm.size]), np.sum(
                sp.ifft(ksp, axes=[-1, -2]) * mps.conjugate(), 0))
コード例 #4
0
ファイル: test_app.py プロジェクト: zhufengGNSS/sigpy
        def test_shepp_logan_SenseRecon_with_comm(self):
            img, mps, ksp = self.shepp_logan_setup()
            lamda = 0
            comm = sp.Communicator()
            ksp = ksp[comm.rank::comm.size]
            mps = mps[comm.rank::comm.size]

            for solver in ['ConjugateGradient',
                           'GradientMethod',
                           'PrimalDualHybridGradient',
                           'ADMM']:
                with self.subTest(solver=solver):
                    img_rec = app.SenseRecon(
                        ksp, mps, lamda, comm=comm, solver=solver,
                        show_pbar=False).run()
                    npt.assert_allclose(img, img_rec, atol=1e-2, rtol=1e-2)
コード例 #5
0
    parser.add_argument('ksp_file', type=str)
    parser.add_argument('coord_file', type=str)
    parser.add_argument('dcf_file', type=str)
    parser.add_argument('mps_file', type=str)
    args = parser.parse_args()

    logging.basicConfig(level=logging.DEBUG)

    logging.info('Reading data.')
    ksp = np.load(args.ksp_file, mmap_mode='r')
    coord = np.load(args.coord_file)
    dcf = np.load(args.dcf_file)

    # Choose device
    comm = sp.Communicator()
    if args.multi_gpu:
        device = comm.rank
    else:
        device = args.device

    logging.info('Jsense Recon.')
    ksp = np.array_split(ksp, comm.size)[comm.rank]
    mps = mr.app.JsenseRecon(ksp,
                             coord=coord,
                             weights=dcf,
                             mps_ker_width=args.mps_ker_width,
                             ksp_calib_width=args.ksp_calib_width,
                             lamda=args.lamda,
                             device=device,
                             comm=comm,