def test_multichar_velocityfield_x(self): # terrainRL_PATH = os.environ['TERRAINRL_PATH'] # sys.path.append(terrainRL_PATH+'/lib') from simAdapter import terrainRLSim envs_list = terrainRLSim.getEnvsList() # print ("# of envs: ", len(envs_list)) # print ("Envs:\n", json.dumps(envs_list, sort_keys=True, indent=4)) env = terrainRLSim.getEnv( env_name="PD_Biped3D_MutliChar_WithVel_LargeBlocks-v0", render=False) env.reset() actionSpace = env.getActionSpace() env.setRandomSeed(1234) actions = [] for i in range(11): action = ((actionSpace.getMaximum() - actionSpace.getMinimum()) * np.random.uniform(size=actionSpace.getMinimum().shape[0]) ) + actionSpace.getMinimum() actions.append(action) observation, reward, done, info = env.step(actions) states = np.array(observation) img_data_size = 1024 agent_num = 1 data_ = [] for i in range(10): data_.append(states[i + 1][0:img_data_size]) ### There is some non-zero data assert np.std(data_) > 0.01 plt.show() env.finish()
def test_load_env(self): # terrainRL_PATH = os.environ['TERRAINRL_PATH'] # sys.path.append(terrainRL_PATH+'/lib') from simAdapter import terrainRLSim envs_list = terrainRLSim.getEnvsList() # print ("# of envs: ", len(envs_list)) # print ("Envs:\n", json.dumps(envs_list, sort_keys=True, indent=4)) env = terrainRLSim.getEnv(env_name="PD_Biped3D_FULL_Imitate-Steps-v0", render=False) env.reset() actionSpace = env.getActionSpace() env.setRandomSeed(1234) env.finish()