コード例 #1
0
ファイル: Kmeans.py プロジェクト: wuga214/DimensionReduction
def getLabels(data, centroids):
    m,_ = data.shape
    labels=np.arange(m)
    for idxdata, valdata in enumerate(data):
        centroid=0
        MIN_VALUE=sys.float_info.max
        for idxcent, valcent in enumerate(centroids):
            if similarity.euclidean(valcent,valdata)<MIN_VALUE:
                MIN_VALUE=similarity.euclidean(valcent,valdata)
                centroid=idxcent
        np.put(labels, idxdata, centroid)
    return labels
              

    
    
        
コード例 #2
0
ファイル: main.py プロジェクト: ichimunemasa/python
#-*- coding: utf-8 -*-
import similarity as sim

if __name__=="__main__":

	
	#辞書
	dictionary = {
	"A":{"apple":2.5,"mikan":2.5,"banana":5.0,"melon":2.0},
	"B":{"apple":2.5,"banana":1.5,"kiui":3.0,"melon":4.0}
	}

	#ユークリッド距離
	value = sim.euclidean(dictionary,"A","B")
	print str(value)
	
	#ピアソン相関
	value = sim.pearson(dictionary,"A","B")
	print str(value)
	
	#コサイン類似度
	value = sim.cosine(dictionary,"A","B")
	print str(value)