コード例 #1
0
    def test_preprocess_power(self):
        main_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/deform/power.yml'))

        shutil.rmtree(main_setting.data.preprocessed_root, ignore_errors=True)
        preprocessor = pre.Preprocessor(main_setting, force_renew=True)
        preprocessor.preprocess_interim_data()
        data_directory = main_setting.data.preprocessed_root \
            / 'train/tet2_3_modulusx0.9000'
        preprocessed_x_grad = sp.load_npz(
            data_directory / 'x_grad.npz')
        reference_x_grad = sp.load_npz(
            'tests/data/deform/interim/train/tet2_3_modulusx0.9000'
            '/x_grad.npz').toarray()
        with open(
                main_setting.data.preprocessed_root / 'preprocessors.pkl',
                'rb') as f:
            preprocess_converter = pickle.load(f)['x_grad'][
                'preprocess_converter']
        std = preprocess_converter.converter.std_
        np.testing.assert_almost_equal(
            preprocessed_x_grad.toarray() * std**.5, reference_x_grad)
        np.testing.assert_almost_equal(
            preprocess_converter.converter.inverse_transform(
                preprocessed_x_grad).toarray(), reference_x_grad)
コード例 #2
0
    def test_postprocessor(self):
        data_setting = setting.DataSetting(
            interim=Path('tests/data/prepost/interim'),
            preprocessed=Path('tests/data/prepost/preprocessed'),
            pad=False
        )
        preprocess_setting = setting.PreprocessSetting(
            {
                'identity': 'identity', 'std_scale': 'std_scale',
                'standardize': 'standardize'}
        )
        main_setting = setting.MainSetting(
            preprocess=preprocess_setting.preprocess, data=data_setting,
            replace_preprocessed=False)

        # Clean up data
        shutil.rmtree(data_setting.interim_root, ignore_errors=True)
        shutil.rmtree(data_setting.preprocessed_root, ignore_errors=True)
        data_setting.preprocessed_root.mkdir(parents=True)

        # Create data
        interim_paths = [
            data_setting.interim_root / 'a',
            data_setting.interim_root / 'b']
        for i, interim_path in enumerate(interim_paths):
            interim_path.mkdir(parents=True)
            n_element = np.random.randint(1e4)
            identity = np.random.randint(2, size=(n_element, 1))
            std_scale = np.random.rand(n_element, 3) * 5 * i
            standardize = np.random.randn(n_element, 5) * 2 * i \
                + i * np.array([[.1, .2, .3, .4, .5]])
            np.save(interim_path / 'identity.npy', identity)
            np.save(interim_path / 'std_scale.npy', std_scale)
            np.save(interim_path / 'standardize.npy', standardize)
            (interim_path / 'converted').touch()

        # Preprocess data
        preprocessor = pre.Preprocessor(main_setting)
        preprocessor.preprocess_interim_data()

        postprocessor = pre.Converter(
            data_setting.preprocessed_root / 'preprocessors.pkl')
        preprocessed_paths = [
            data_setting.preprocessed_root / 'a',
            data_setting.preprocessed_root / 'b']
        for interim_path, preprocessed_path in zip(
                interim_paths, preprocessed_paths):
            dict_data_x = {
                'identity': np.load(preprocessed_path / 'identity.npy'),
                'std_scale': np.load(preprocessed_path / 'std_scale.npy')}
            dict_data_y = {
                'standardize': np.load(preprocessed_path / 'standardize.npy')}
            inv_dict_data_x, inv_dict_data_y, _ = postprocessor.postprocess(
                dict_data_x, dict_data_y)
            for k, v in inv_dict_data_x.items():
                interim_data = np.load(interim_path / (k + '.npy'))
                np.testing.assert_almost_equal(interim_data, v, decimal=5)
            for k, v in inv_dict_data_y.items():
                interim_data = np.load(interim_path / (k + '.npy'))
                np.testing.assert_almost_equal(interim_data, v, decimal=5)
コード例 #3
0
def preprocess_deform_timeseries():
    main_setting = setting.MainSetting.read_settings_yaml(
        pathlib.Path('tests/data/deform_timeseries/data.yml'))

    preprocessor = prepost.Preprocessor(main_setting, force_renew=True)
    preprocessor.preprocess_interim_data()
    return
コード例 #4
0
def preprocess_deform():
    main_setting = setting.MainSetting.read_settings_yaml(
        pathlib.Path('tests/data/deform/data.yml'))

    raw_converter = prepost.RawConverter(
        main_setting,
        recursive=True,
        force_renew=True,
        conversion_function=conversion_function)
    raw_converter.convert()

    preprocessor = prepost.Preprocessor(main_setting, force_renew=True)
    preprocessor.preprocess_interim_data()

    interim_path = pathlib.Path(
        'tests/data/deform/interim/train/tet2_3_modulusx0.9000')
    preprocessed_path = pathlib.Path(
        'tests/data/deform/preprocessed/train/tet2_3_modulusx0.9000')
    interim_x_grad = sp.load_npz(interim_path / 'x_grad.npz')
    preprocessed_x_grad = sp.load_npz(preprocessed_path / 'x_grad.npz')
    scale_x_grad = preprocessed_x_grad.data / interim_x_grad.data

    dict_reference_scale = calculate_scale_isoam()
    np.testing.assert_almost_equal(np.var(scale_x_grad), 0.)
    np.testing.assert_almost_equal(np.mean(scale_x_grad),
                                   dict_reference_scale['x_grad'])

    interim_y_grad = sp.load_npz(interim_path / 'y_grad.npz')
    preprocessed_y_grad = sp.load_npz(preprocessed_path / 'y_grad.npz')
    scale_y_grad = preprocessed_y_grad.data / interim_y_grad.data
    np.testing.assert_almost_equal(np.mean(scale_y_grad),
                                   np.mean(scale_x_grad))

    return
コード例 #5
0
    def test_preprocess_same_as(self):
        main_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/ode/data.yml'))

        shutil.rmtree(main_setting.data.preprocessed_root, ignore_errors=True)
        preprocessor = pre.Preprocessor(main_setting, force_renew=True)
        preprocessor.preprocess_interim_data()
        data_directory = main_setting.data.preprocessed_root / 'train/0'
        y0 = np.load(data_directory / 'y0.npy')
        y0_initial = np.load(data_directory / 'y0_initial.npy')
        np.testing.assert_almost_equal(y0[0], y0_initial[0])
        np.testing.assert_almost_equal(y0_initial - y0_initial[0], 0.)
コード例 #6
0
    def test_preprocess_interim_list(self):
        main_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/list/data.yml'))
        shutil.rmtree(main_setting.data.preprocessed_root, ignore_errors=True)

        preprocessor = pre.Preprocessor(main_setting)
        preprocessor.preprocess_interim_data()
        self.assertTrue(Path(
            'tests/data/list/preprocessed/data/tet2_3_modulusx0.9500'
        ).exists())
        self.assertTrue(Path(
            'tests/data/list/preprocessed/data/tet2_4_modulusx0.9000'
        ).exists())
コード例 #7
0
def preprocess_rotation():
    main_setting = setting.MainSetting.read_settings_yaml(
        pathlib.Path('tests/data/rotation/data.yml'))

    raw_converter = prepost.RawConverter(
        main_setting,
        recursive=True,
        force_renew=True,
        conversion_function=rotation_conversion_function)
    raw_converter.convert()

    preprocessor = prepost.Preprocessor(main_setting, force_renew=True)
    preprocessor.preprocess_interim_data()
    return
コード例 #8
0
def preprocess_heat_time_series():
    main_setting = setting.MainSetting.read_settings_yaml(
        pathlib.Path('tests/data/heat_time_series/data.yml'))

    raw_converter = prepost.RawConverter(
        main_setting,
        recursive=True,
        force_renew=True,
        conversion_function=conversion_function_heat_time_series,
        write_ucd=False)
    raw_converter.convert()

    preprocessor = prepost.Preprocessor(main_setting, force_renew=True)
    preprocessor.preprocess_interim_data()
    return
コード例 #9
0
    def test_preprocess_timeseries_data(self):
        main_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/csv_timeseries/lstm.yml'))

        shutil.rmtree(main_setting.data.preprocessed_root, ignore_errors=True)

        p = pre.Preprocessor(main_setting)
        p.preprocess_interim_data()

        c = pre.Converter(
            main_setting.data.preprocessed_root / 'preprocessors.pkl')
        original_dict_x = {
            'a': np.load(
                main_setting.data.interim_root / 'train/0/a.npy')}
        preprocessed_dict_x = c.preprocess(original_dict_x)
        postprocessed_dict_x, _, _ = c.postprocess(preprocessed_dict_x, {})
        np.testing.assert_almost_equal(
            preprocessed_dict_x['a'],
            np.load(
                main_setting.data.preprocessed_root
                / 'train/0/a.npy'))
        np.testing.assert_almost_equal(
            original_dict_x['a'], postprocessed_dict_x['a'])
コード例 #10
0
    def test_preprocess_deform(self):
        main_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/deform/data.yml'))
        main_setting.data.interim = [Path(
            'tests/data/deform/test_prepost/interim')]
        main_setting.data.preprocessed = [Path(
            'tests/data/deform/test_prepost/preprocessed')]

        shutil.rmtree(main_setting.data.interim_root, ignore_errors=True)
        shutil.rmtree(main_setting.data.preprocessed_root, ignore_errors=True)

        raw_converter = pre.RawConverter(
            main_setting, conversion_function=conversion_function)
        raw_converter.convert()
        p = pre.Preprocessor(main_setting)
        p.preprocess_interim_data()

        interim_strain = np.load(
            'tests/data/deform/test_prepost/interim/train/'
            'tet2_3_modulusx1.0000/elemental_strain.npy')
        preprocessed_strain = np.load(
            'tests/data/deform/test_prepost/preprocessed/train/'
            'tet2_3_modulusx1.0000/elemental_strain.npy')
        ratio_strain = interim_strain / preprocessed_strain
        np.testing.assert_almost_equal(
            ratio_strain - np.mean(ratio_strain), 0.)

        interim_y_grad = sp.load_npz(
            'tests/data/deform/test_prepost/interim/train/'
            'tet2_3_modulusx1.0000/y_grad.npz')
        preprocessed_y_grad = sp.load_npz(
            'tests/data/deform/test_prepost/preprocessed/train/'
            'tet2_3_modulusx1.0000/y_grad.npz')

        ratio_y_grad = interim_y_grad.data \
            / preprocessed_y_grad.data
        np.testing.assert_almost_equal(np.var(ratio_y_grad), 0.)
コード例 #11
0
    def test_preprocessor(self):
        data_setting = setting.DataSetting(
            interim=Path('tests/data/prepost/interim'),
            preprocessed=Path('tests/data/prepost/preprocessed'),
            pad=False
        )
        preprocess_setting = setting.PreprocessSetting(
            {
                'identity': 'identity', 'std_scale': 'std_scale',
                'standardize': 'standardize'}
        )
        main_setting = setting.MainSetting(
            preprocess=preprocess_setting.preprocess, data=data_setting,
            replace_preprocessed=False)
        main_setting.preprocess[  # pylint: disable=E1136
            'std_scale']['componentwise'] = True  # pylint: disable=E1136
        main_setting.preprocess[  # pylint: disable=E1136
            'standardize']['componentwise'] = True  # pylint: disable=E1136

        # Clean up data
        shutil.rmtree(data_setting.interim_root, ignore_errors=True)
        shutil.rmtree(data_setting.preprocessed_root, ignore_errors=True)
        data_setting.preprocessed_root.mkdir(parents=True)

        # Create data
        interim_paths = [
            data_setting.interim_root / 'a',
            data_setting.interim_root / 'b']
        for i, interim_path in enumerate(interim_paths):
            interim_path.mkdir(parents=True)
            n_element = int(1e5)
            identity = np.random.randint(2, size=(n_element, 1))
            std_scale = np.random.rand(n_element, 3) * 5 * i
            standardize = np.random.randn(n_element, 5) * 2 * i \
                + i * np.array([[.1, .2, .3, .4, .5]])
            np.save(interim_path / 'identity.npy', identity)
            np.save(interim_path / 'std_scale.npy', std_scale)
            np.save(interim_path / 'standardize.npy', standardize)
            (interim_path / 'converted').touch()

        # Preprocess data
        preprocessor = pre.Preprocessor(main_setting)
        preprocessor.preprocess_interim_data()

        # Test preprocessed data is as desired
        epsilon = 1e-5
        preprocessed_paths = [
            data_setting.preprocessed_root / 'a',
            data_setting.preprocessed_root / 'b']

        int_identity = np.concatenate([
            np.load(p / 'identity.npy') for p in interim_paths])
        pre_identity = np.concatenate([
            np.load(p / 'identity.npy') for p in preprocessed_paths])

        np.testing.assert_almost_equal(
            int_identity, pre_identity, decimal=3)

        int_std_scale = np.concatenate([
            np.load(p / 'std_scale.npy') for p in interim_paths])
        pre_std_scale = np.concatenate([
            np.load(p / 'std_scale.npy') for p in preprocessed_paths])

        np.testing.assert_almost_equal(
            int_std_scale / (np.std(int_std_scale, axis=0) + epsilon),
            pre_std_scale, decimal=3)
        np.testing.assert_almost_equal(
            np.std(pre_std_scale), 1. + epsilon, decimal=3)

        int_standardize = np.concatenate([
            np.load(p / 'standardize.npy') for p in interim_paths])
        pre_standardize = np.concatenate([
            np.load(p / 'standardize.npy') for p in preprocessed_paths])

        np.testing.assert_almost_equal(
            (int_standardize - np.mean(int_standardize, axis=0))
            / (np.std(int_standardize, axis=0) + epsilon),
            pre_standardize, decimal=3)
        np.testing.assert_almost_equal(
            np.std(pre_standardize, axis=0), 1. + epsilon, decimal=3)
        np.testing.assert_almost_equal(
            np.mean(pre_standardize, axis=0), np.zeros(5), decimal=3)
コード例 #12
0
    def test_grad_grad_vs_laplacian(self):
        preprocess_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/precalculated/convert.yml'))
        shutil.rmtree(preprocess_setting.data.interim, ignore_errors=True)
        shutil.rmtree(preprocess_setting.data.preprocessed, ignore_errors=True)

        raw_converter = pre.RawConverter(
            preprocess_setting,
            conversion_function=convert.HeatConversionFuncionCreator(
                create_elemental=False),
            filter_function=convert.filter_function_heat,
            force_renew=True, recursive=True, to_first_order=True,
            write_ucd=False, read_npy=False, read_res=True)
        raw_converter.convert()
        preprocessor = pre.Preprocessor(
            preprocess_setting, force_renew=True)
        preprocessor.preprocess_interim_data()

        # Confirm results does not change under rigid body transformation
        grad_grad_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/precalculated/grad_grad.yml'))
        grad_grad_tr = trainer.Trainer(grad_grad_setting)
        if grad_grad_tr.setting.trainer.output_directory.exists():
            shutil.rmtree(grad_grad_tr.setting.trainer.output_directory)
        grad_grad_tr.train()

        grad_grad_ir = inferer.Inferer(grad_grad_setting)
        inference_outpout_directory = \
            grad_grad_setting.trainer.output_directory / 'inferred'
        if inference_outpout_directory.exists():
            shutil.rmtree(inference_outpout_directory)
        results = grad_grad_ir.infer(
            model=Path('tests/data/precalculated/models/grad_grad'),
            preprocessed_data_directory=[
                Path(
                    'tests/data/precalculated/preprocessed/cube/clscale1.0/'
                    'original'),
                Path(
                    'tests/data/precalculated/preprocessed/cube/clscale1.0/'
                    'rotated')],
            converter_parameters_pkl=Path(
                'tests/data/precalculated/preprocessed/preprocessors.pkl'),
            output_directory=inference_outpout_directory,
            overwrite=True)
        np.testing.assert_almost_equal(
            results[0]['dict_y']['nodal_t_100'],
            results[1]['dict_y']['nodal_t_100'])

        laplacian_setting = setting.MainSetting.read_settings_yaml(
            Path('tests/data/precalculated/laplacian.yml'))
        laplacian_tr = trainer.Trainer(laplacian_setting)
        if laplacian_tr.setting.trainer.output_directory.exists():
            shutil.rmtree(laplacian_tr.setting.trainer.output_directory)
        laplacian_tr.train()

        laplacian_ir = inferer.Inferer(laplacian_setting)
        inference_outpout_directory = \
            laplacian_setting.trainer.output_directory / 'inferred'
        if inference_outpout_directory.exists():
            shutil.rmtree(inference_outpout_directory)
        results = laplacian_ir.infer(
            model=Path('tests/data/precalculated/models/laplacian'),
            preprocessed_data_directory=[
                Path(
                    'tests/data/precalculated/preprocessed/cube/clscale1.0/'
                    'original'),
                Path(
                    'tests/data/precalculated/preprocessed/cube/clscale1.0/'
                    'rotated')],
            converter_parameters_pkl=Path(
                'tests/data/precalculated/preprocessed/preprocessors.pkl'),
            output_directory=inference_outpout_directory,
            overwrite=True)
        np.testing.assert_almost_equal(
            results[0]['dict_y']['nodal_t_100'],
            results[1]['dict_y']['nodal_t_100'])
コード例 #13
0
def generate_ode():
    time_range = (10., 50.)
    delta_t = .1

    def f0(ts, xs):
        ys = np.zeros(list(xs.shape[:2]) + [1])
        ys[0] = np.random.rand(*list(ys.shape)[1:])
        for i in range(1, len(ts)):
            ys[i, :, 0] = ys[i - 1, :, 0] + delta_t * (-.1 * ys[i - 1, :, 0])
        return ys

    def f1(ts, xs):
        ys = np.zeros(list(xs.shape[:2]) + [1])
        ys[0] = np.random.rand(*list(ys.shape)[1:])
        for i in range(1, len(ts)):
            ys[i, :, 0] = ys[i - 1, :, 0] + delta_t * xs[i, :, 0] * .1
        return ys

    def f2(ts, xs):
        ys = np.zeros(list(xs.shape[:2]) + [1])
        ys[0] = np.random.rand(*list(ys.shape)[1:])
        for i in range(1, len(ts)):
            ys[i, :,
               0] = ys[i - 1, :,
                       0] + delta_t * (.01 * xs[i, :, 1] - .01 * xs[i, :, 0] *
                                       xs[i, :, 3] - .01 * ys[i - 1, :, 0])
        return ys

    def f3(ts, xs):
        ys = np.zeros(list(xs.shape[:2]) + [2])
        ys[0] = np.random.rand(*list(ys.shape)[1:]) * 2 - 1
        for i in range(1, len(ts)):
            ys[i, :, 0] = ys[i - 1, :, 0] + delta_t * (
                -.05 * ys[i - 1, :, 1] + .01 *
                (1 - ys[i - 1, :, 1]**2) * ys[i - 1, :, 0])
            ys[i, :, 1] = ys[i - 1, :, 1] + delta_t * ys[i - 1, :, 0]
        return ys

    def generate_ode(root_dir, n_data):
        if root_dir.exists():
            shutil.rmtree(root_dir)

        for i in range(n_data):
            n_element = np.random.randint(3, 10)
            t_max = np.random.rand() * (time_range[1] -
                                        time_range[0]) + time_range[0]
            ts = np.arange(0., t_max, delta_t)
            x0 = np.random.rand() * np.sin(
                2 * np.pi * (np.random.rand() / 10. * ts + np.random.rand()))
            x1 = np.random.rand() * np.sin(
                2 * np.pi * (np.random.rand() / 20. * ts + np.random.rand()))
            x2 = np.random.rand() * (
                1 - np.exp(-ts / 5. * np.random.rand())) + np.random.rand()
            x3 = np.exp(-ts / 10. * np.random.rand()) + np.random.rand()
            _xs = np.stack([x0, x1, x2, x3], axis=1)[:, None, :]
            xs = np.concatenate(
                [_xs * a for a in np.linspace(1., 2., n_element)], axis=1)

            y0 = f0(ts, xs)
            y1 = f1(ts, xs)
            y2 = f2(ts, xs)
            y3 = f3(ts, xs)

            stacked_ts = np.concatenate([ts[:, None, None]] * n_element,
                                        axis=1)

            output_directory = root_dir / f"{i}"
            output_directory.mkdir(parents=True)
            np.save(output_directory / 't.npy', stacked_ts.astype(np.float32))
            np.save(output_directory / 'x.npy', xs.astype(np.float32))
            np.save(output_directory / 'y0.npy', y0.astype(np.float32))
            np.save(output_directory / 'y1.npy', y1.astype(np.float32))
            np.save(output_directory / 'y2.npy', y2.astype(np.float32))
            np.save(output_directory / 'y3.npy', y3.astype(np.float32))
            np.save(output_directory / 'y0_initial.npy',
                    (np.ones(y0.shape) * y0[0, :, :]).astype(np.float32))
            np.save(output_directory / 'y1_initial.npy',
                    (np.ones(y1.shape) * y1[0, :, :]).astype(np.float32))
            np.save(output_directory / 'y2_initial.npy',
                    (np.ones(y2.shape) * y2[0, :, :]).astype(np.float32))
            np.save(output_directory / 'y3_initial.npy',
                    (np.ones(y3.shape) * y3[0, :, :]).astype(np.float32))
            (output_directory / 'converted').touch()

            if PLOT:
                plt.plot(ts, x0, label='x0')
                plt.plot(ts, x1, label='x1')
                plt.plot(ts, x2, label='x2')
                plt.plot(ts, x3, label='x3')
                plt.plot(ts, y0[:, 0, 0], label='y0')
                plt.plot(ts, y1[:, 0, 0], label='y1')
                plt.plot(ts, y2[:, 0, 0], label='y2')
                plt.plot(ts, y3[:, 0, 0], label='y3-0')
                plt.plot(ts, y3[:, 0, 1], label='y3-1')
                plt.legend()
                plt.savefig(output_directory / 'plot.pdf')
                plt.show()
        return

    generate_ode(pathlib.Path('tests/data/ode/interim/train'), 100)
    generate_ode(pathlib.Path('tests/data/ode/interim/validation'), 10)
    generate_ode(pathlib.Path('tests/data/ode/interim/test'), 10)

    main_setting = setting.MainSetting.read_settings_yaml(
        pathlib.Path('tests/data/ode/data.yml'))
    preprocessor = prepost.Preprocessor(main_setting, force_renew=True)
    preprocessor.preprocess_interim_data()
    return