コード例 #1
0
def get_renderables(P, group_indices, vertex_count=100):
    padding = 0.3
    order = "xyz"
    color_inactive = (0.8, 0.8, 0.8, 0.4)
    max_depth = int(np.log(P.n_primitives)/np.log(2)) + 1

    def get_center(depth, index):
        width = (2.**depth) * (1+padding)
        tree = dict(
            x=0,
            y=float(index)*(1+padding)-(width-1-padding)/2,
            z=-float(depth)*(1+padding)
        )
        return np.array([[tree[axis] for axis in order]])

    def children(d, i):
        if d+1 < max_depth:
            return children(d+1, 2*i) + children(d+1, 2*i+1)
        else:
            return [i]

    def colors(d, i):
        if d+1 < max_depth:
            return colors(d+1, 2*i) + colors(d+1, 2*i+1)
        else:
            return [(i, get_color(d, i, 2**(max_depth-1)))]

    meshes = []
    lines = []
    for d, i in group_indices:
        meshes.append(Mesh.from_superquadrics(
            *_unpack(
                P,
                get_center(d, i),
                children(d, i),
                colors(d, i),
                color_inactive
            ),
            vertex_count=vertex_count
        ))
        if d > 0:
            lines.extend([
                get_center(d-1, i//2)[0],
                get_center(d, i)[0]
            ])
    meshes.append(Lines(lines, (0.1, 0.1, 0.1), width=0.05))

    return meshes
コード例 #2
0
def _renderables_from_flat_partition(y_hat, args):
    _, P = y_hat.space_partition
    # Collect the sqs that have prob larger than threshold
    indices = [
        i for i in range(y_hat.n_primitives)
        if y_hat.probs_r[0, i] >= args.prob_threshold
    ]
    active_prims_map = {(0, j): i for i, j in enumerate(indices)}
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=P[-1].translations_r[0, indices],
                    rotations=P[-1].rotations_r[0, indices],
                    sizes=P[-1].sizes_r[0, indices] / 2.0,
                    shapes=P[-1].shapes_r[0, indices])), get_color(0, indices))
    ], indices
コード例 #3
0
def _renderables_from_partition(y_hat, args):
    [C, P] = y_hat.space_partition
    active_prims_map = {
        p: i
        for (i, p) in enumerate(get_primitives_indices(P))
    }
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=P[depth].translations_r[:, idx],
                    rotations=P[depth].rotations_r[:, idx],
                    sizes=P[depth].sizes_r[:, idx],
                    shapes=P[depth].shapes_r[:, idx])),
            get_color_groupped(depth, idx, args.max_depth)
            if args.group_color else get_color(depth, idx))
        for depth, idx in active_prims_map
    ], get_primitives_indices(P)
コード例 #4
0
def _renderables_from_fit(y_hat, args):
    F = y_hat.fit
    active_prims = filter_primitives(
        F,
        qos_less(args.qos_threshold),
        volume_larger(args.vol_threshold),
    )
    active_prims_map = {p: i for (i, p) in enumerate(active_prims)}
    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=F[depth].translations_r[:, idx],
                    rotations=F[depth].rotations_r[:, idx],
                    sizes=F[depth].sizes_r[:, idx],
                    shapes=F[depth].shapes_r[:, idx])),
            get_color_groupped(depth, idx, args.max_depth)
            if args.group_color else get_color(depth, idx))
        for depth, idx in active_prims_map
    ], active_prims
コード例 #5
0
def _renderables_from_flat_primitives(y_hat, args):
    # Collect the sqs that have prob larger than threshold
    indices = [
        i for i in range(y_hat.n_primitives)
        if y_hat.probs_r[0, i] >= args.prob_threshold
    ]
    active_prims_map = {(0, j): i for i, j in enumerate(indices)}

    if args.with_post_processing:
        indices = get_non_overlapping_primitives(y_hat, indices)

    return [
        Mesh.from_superquadrics(
            *_unpack(
                PrimitiveParameters.with_keys(
                    translations=y_hat.translations_r[0, indices],
                    rotations=y_hat.rotations_r[0, indices],
                    sizes=y_hat.sizes_r[0, indices],
                    shapes=y_hat.shapes_r[0, indices])), get_color(0, indices))
    ], indices
コード例 #6
0
        X = sample[0].to(device)
        y_hat = network(X)
        F = y_hat.fit
        [C, P] = y_hat.space_partition
        n_primitives = y_hat.n_primitives
        colors = torch.tensor(np.array(
            plt.cm.jet(np.linspace(0, 1, 16))
        ))

        if args.from_fit:
            max_depth = 2**(len(F) - 1)
        else:
            max_depth = -1
        meshes = [
            [Mesh.from_superquadrics(
                *_unpack(p, i, max_depth, colors, args.color_siblings)
            )]
            for i, p in enumerate(F if args.from_fit else P)
        ]
        behaviours = [
            CycleThroughObjects(meshes, interval=args.interval),
            LightToCamera()
        ]
        if args.save_frames:
            behaviours += [
                SaveFrames(args.save_frames, args.save_frequency)
            ]
        if args.with_rotating_camera:
            behaviours += [
                CameraTrajectory(
                    Circle([0, 0, 1], [4, 0, 1], [0, 0, 1]), 0.001
コード例 #7
0
def get_filtered_renderables(tree, group_indices, qos_threshold, vol_threshold,
                             padding=0.3, order="xyz", no_lines=False,
                             visualize_as_tree=False,
                             color_inactive=(0.8, 0.8, 0.8, 1.0),
                             group_color=False, vertex_count=100,
                             line_offset=[0, 0, 0]):
    max_depth = max(d for (d, i) in group_indices)

    def get_center(depth, index):
        if visualize_as_tree:
            max_width = (2.**max_depth) * (1+padding)
            width = (2.**(max_depth - depth)) * (1+padding)
            tree = dict(
                x=0,
                y=float(index)*(width)-(max_width-width)/2,
                z=-float(depth)*(1+padding)
            )
        else:
            width = (2.**depth) * (1+padding)
            tree = dict(
                x=0,
                y=float(index)*(1+padding)-(width-1-padding)/2,
                z=-float(depth)*(1+padding)
            )
        return np.array([[tree[axis] for axis in order]])

    def get_ancestors(depth, index, storage):
        storage.add((depth, index))
        pdepth = depth-1
        pindex = index//2
        parent = pdepth, pindex
        if parent not in storage:
            get_ancestors(pdepth, pindex, storage)

    active_prims = filter_primitives(
        tree,
        qos_less(qos_threshold),
        volume_larger(vol_threshold)
    )
    active_prims_map = {p: i for (i, p) in enumerate(active_prims)}
    valid_nodes = set([(0, 0)])
    for d, i in active_prims:
        get_ancestors(d, i, valid_nodes)

    def children(d, i):
        if (d, i) in active_prims_map:
            return [active_prims_map[d, i]]
        elif d < len(tree):
            return children(d+1, 2*i) + children(d+1, 2*i+1)
        else:
            return []

    def colors(d, i):
        max_d = len(tree)
        if (d, i) in active_prims_map:
            return [(active_prims_map[d, i], get_color(d, i, 2**(max_d-1)))]
        elif d < max_d:
            return colors(d+1, 2*i) + colors(d+1, 2*i+1)
        else:
            return []

    for d, i in group_indices:
        if d > 0 and (d, i) in valid_nodes and len(children(d-1, i//2)) == 1:
            valid_nodes.remove((d, i))

    P = primitive_parameters_from_indices(tree, active_prims)
    meshes = []
    lines = []
    for d, i in group_indices:
        if (d, i) not in valid_nodes:
            continue
        sq_colors = colors(d, i)
        if group_color:
            sq_colors = [
                (j, get_color(d, i))
                for j, _ in sq_colors
            ]
        if len(group_indices) == 1:
            meshes.append(Mesh.from_superquadrics(
                *_unpack(
                    P,
                    get_center(0, 0),
                    children(d, i),
                    sq_colors,
                    color_inactive
                ),
                vertex_count=vertex_count,
                offset=get_center(0, 0)
            ))
        else:
            meshes.append(Mesh.from_superquadrics(
                *_unpack(
                    P,
                    get_center(d, i),
                    children(d, i),
                    sq_colors,
                    color_inactive
                ),
                vertex_count=vertex_count,
                offset=get_center(d, i)
            ))
        if d > 0 and not no_lines:
            lines.extend([
                get_center(d-1, i//2)[0] + np.asarray(line_offset),
                get_center(d, i)[0] + np.asarray(line_offset)
            ])
    meshes.append(Lines(lines, (0.1, 0.1, 0.1), width=0.05))

    if no_lines:
        meshes.pop()

    return meshes