コード例 #1
0
    def setup_model(self, drop_rate):
        if train_CNN:
            # Initialize modified VGG16
            model = models.vgg16(pretrained=True)
            model.features[0] = nn.Conv2d(in_channels=1,
                                          out_channels=64,
                                          kernel_size=3,
                                          stride=1,
                                          padding=1)
            model.features[4] = nn.Identity()
            model.features[16] = nn.Identity()
            model.features[23] = nn.Identity()
            model.classifier[6] = nn.Linear(in_features=4096,
                                            out_features=10,
                                            bias=True)
            model.classifier[2] = nn.Dropout(p=drop_rate)
            model.classifier[5] = nn.Dropout(p=drop_rate)

        elif train_FC:
            # Initialize Fully Connected
            model = fullyNet(input_size=28 * 28 * 1,
                             drop_rate=drop_rate,
                             init_weights=True)

        return model
コード例 #2
0
ファイル: main_ISIC.py プロジェクト: surya895/Courses
    def setup_model(self, drop_rate):
        if train_CNN:
            # Loading pretrained ResNext101 model
            model = torch.hub.load('facebookresearch/WSL-Images',
                                   'resnext101_32x16d_wsl')

            # Setting last fully connected layers to our defined FullyConnected
            model.fc = FullyConnected(drop_rate=drop_rate)

        elif train_FC:
            # Initialize model
            model = fullyNet(input_size=224 * 224 * 3,
                             drop_rate=drop_rate,
                             num_classes=2)

        return model
コード例 #3
0
 def setup_model(self):
     if train_CNN:
         # Initialize modified VGG16
         model = models.vgg16(pretrained=True)
         model.features[4] = nn.Identity()
         model.features[16] = nn.Identity()
         model.features[23] = nn.Identity()
         model.classifier[6] = nn.Linear(in_features=4096, out_features=10, bias=True)
         model.classifier[2] = nn.Dropout(p=0.0)
         model.classifier[5] = nn.Dropout(p=0.0)
         model.cuda()
         
     elif train_FC:
         # Initialize model
         model = fullyNet(input_size=32*32*3, drop_rate=0.0, init_weights=True)
         model.cuda()
     
     return model