def main(): # mdp = GridWorldMDP() mdp = ChainMDP() vi = ValueIteration(mdp) vi.run_vi() vi.print_value_func()
def make_mdp(mdp_class="grid", grid_dim=7): ''' Returns: (MDP) ''' # Grid/Hallway stuff. width, height = grid_dim, grid_dim upworld_goal_locs = [(i, width) for i in range(1, height+1)] four_room_goal_locs = [(width, height)] #, (width, 1), (1, height)] # (1, height - 2), (width - 2, height - 2), (width - 1, height - 1), (width - 2, 1)] four_room_goal_loc = four_room_goal_locs[0] # Taxi stuff. agent = {"x":1, "y":1, "has_passenger":0} passengers = [{"x":grid_dim / 2, "y":grid_dim / 2, "dest_x":grid_dim-2, "dest_y":2, "in_taxi":0}] walls = [] # Trench stuff tr_agent = {"x": 1, "y": 1, "dx": 1, "dy": 0, "dest_x": grid_dim, "dest_y": grid_dim, "has_block": 0} blocks = [{"x": grid_dim, "y": 1}] lavas = [{"x": x, "y": y} for x, y in map(lambda z: (z + 1, (grid_dim + 1) / 2), range(grid_dim))] # Do grids separately to avoid making error-prone domains. if mdp_class == "four_room": mdp = FourRoomMDP(width=width, height=height, goal_locs=[four_room_goal_loc]) else: mdp = {"upworld":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=upworld_goal_locs), "chain":ChainMDP(num_states=grid_dim), "random":RandomMDP(num_states=50, num_rand_trans=2), "hanoi":HanoiMDP(num_pegs=grid_dim, num_discs=3), "taxi":TaxiOOMDP(width=grid_dim, height=grid_dim, agent=agent, walls=walls, passengers=passengers), "trench":TrenchOOMDP(width=grid_dim, height=3, agent=tr_agent, blocks=blocks, lavas=lavas)}[mdp_class] return mdp
def choose_mdp(mdp_name, env_name="Asteroids-v0"): ''' Args: mdp_name (str): one of {gym, grid, chain, taxi, ...} gym_env_name (str): gym environment name, like 'CartPole-v0' Returns: (MDP) ''' # Other imports from simple_rl.tasks import ChainMDP, GridWorldMDP, FourRoomMDP, TaxiOOMDP, RandomMDP, PrisonersDilemmaMDP, RockPaperScissorsMDP, GridGameMDP # Taxi MDP. agent = {"x":1, "y":1, "has_passenger":0} passengers = [{"x":4, "y":3, "dest_x":2, "dest_y":2, "in_taxi":0}] walls = [] if mdp_name == "gym": # OpenAI Gym MDP. try: from simple_rl.tasks.gym.GymMDPClass import GymMDP except: raise ValueError("(simple_rl) Error: OpenAI gym not installed.") return GymMDP(env_name, render=True) else: return {"grid":GridWorldMDP(5, 5, (1, 1), goal_locs=[(5, 3), (4,1)]), "four_room":FourRoomMDP(), "chain":ChainMDP(5), "taxi":TaxiOOMDP(10, 10, slip_prob=0.0, agent=agent, walls=walls, passengers=passengers), "random":RandomMDP(num_states=40, num_rand_trans=20), "prison":PrisonersDilemmaMDP(), "rps":RockPaperScissorsMDP(), "grid_game":GridGameMDP(), "multi":{0.5:RandomMDP(num_states=40, num_rand_trans=20), 0.5:RandomMDP(num_states=40, num_rand_trans=5)}}[mdp_name]
def make_mdp(mdp_class="grid", grid_dim=7): ''' Returns: (MDP) ''' # Grid/Hallway stuff. width, height = grid_dim, grid_dim hall_goal_locs = [(i, width) for i in range(1, height + 1)] four_room_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2), (width - 2, 1)] four_room_goal_loc = four_room_goal_locs[5] # Taxi stuff. agent = {"x": 1, "y": 1, "has_passenger": 0} passengers = [{ "x": grid_dim / 2, "y": grid_dim / 2, "dest_x": grid_dim - 2, "dest_y": 2, "in_taxi": 0 }] walls = [] mdp = { "hall": GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=hall_goal_locs), "pblocks_grid": make_grid_world_from_file("pblocks_grid.txt", randomize=True), "grid": GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[(grid_dim, grid_dim)]), "four_room": FourRoomMDP(width=width, height=height, goal_locs=[four_room_goal_loc]), "chain": ChainMDP(num_states=grid_dim), "random": RandomMDP(num_states=50, num_rand_trans=2), "hanoi": HanoiMDP(num_pegs=grid_dim, num_discs=3), "taxi": TaxiOOMDP(width=grid_dim, height=grid_dim, slip_prob=0.0, agent=agent, walls=walls, passengers=passengers) }[mdp_class] return mdp
def make_mdp(mdp_class="grid", state_size=7): ''' Returns: (MDP) ''' # Grid/Hallway stuff. width, height = state_size, state_size hall_goal_locs = [(i, width) for i in range(1, height + 1)] # Taxi stuff. agent = {"x": 1, "y": 1, "has_passenger": 0} passengers = [{ "x": state_size / 2, "y": state_size / 2, "dest_x": state_size - 2, "dest_y": 2, "in_taxi": 0 }] walls = [] mdp = { "hall": GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=hall_goal_locs), "pblocks_grid": make_grid_world_from_file("pblocks_grid.txt", randomize=True), "grid": GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[(state_size, state_size)]), "four_room": FourRoomMDP(width=width, height=height, goal_locs=[(width, height)]), "chain": ChainMDP(num_states=state_size), "random": RandomMDP(num_states=50, num_rand_trans=2), "taxi": TaxiOOMDP(width=state_size, height=state_size, slip_prob=0.0, agent=agent, walls=walls, passengers=passengers) }[mdp_class] return mdp
def make_mdp_distr(mdp_class="grid", num_mdps=15, gamma=0.99): ''' Args: mdp_class (str): one of {"grid", "random"} num_mdps (int) Returns: (MDPDistribution) ''' mdp_dist_dict = {} mdp_prob = 1.0 / num_mdps height, width = 10, 10 # Make @num_mdps MDPs. for i in xrange(num_mdps): next_goals = rnd.sample([(1, 7), (7, 1), (7, 7), (6, 6), (6, 1), (1, 6)], 2) new_mdp = { "grid": GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=rnd.sample( zip(range(1, width + 1), [height] * width), 1), is_goal_terminal=True, gamma=gamma), "four_room": FourRoomMDP(width=8, height=8, goal_locs=next_goals, gamma=gamma), "chain": ChainMDP(num_states=10, reset_val=rnd.choice([0, 0.01, 0.05, 0.1]), gamma=gamma), "random": RandomMDP(num_states=40, num_rand_trans=rnd.randint(1, 10), gamma=gamma) }[mdp_class] mdp_dist_dict[new_mdp] = mdp_prob return MDPDistribution(mdp_dist_dict)
def choose_mdp(mdp_name, atari_game="centipede"): ''' Args: mdp_name (str): one of {atari, grid, chain, taxi} atari_game (str): one of {centipede, breakout, etc.} Returns: (MDP) ''' # Grid World MDP. grid_mdp = GridWorldMDP(10, 10, (1, 1), (10, 10)) # Chain MDP. chain_mdp = ChainMDP(15) # Taxi MDP. agent = {"x": 1, "y": 1, "has_passenger": 0} passengers = [{"x": 5, "y": 5, "dest_x": 3, "dest_y": 3, "in_taxi": 0}] taxi_mdp = TaxiOOMDP(6, 6, agent_loc=agent, walls=[], passengers=passengers) if mdp_name == "atari": # Atari import is here in case users don't have the Arcade Learning Environment. try: from simple_rl.tasks.atari.AtariMDPClass import AtariMDP return AtariMDP(rom=atari_game, grayscale=True) except: print "ERROR: you don't have the Arcade Learning Environment installed." print "\tTry here: https://github.com/mgbellemare/Arcade-Learning-Environment." quit() else: return { "grid": grid_mdp, "chain": chain_mdp, "taxi": taxi_mdp }[mdp_name]
def make_mdp_distr(mdp_class, is_goal_terminal, mdp_size=11, horizon=0, gamma=0.99): ''' Args: mdp_class (str): one of {"grid", "random"} horizon (int) step_cost (float) gamma (float) Returns: (MDPDistribution) ''' mdp_dist_dict = {} height, width, = mdp_size, mdp_size # Corridor. corr_width = 20 corr_goal_magnitude = 1 #random.randint(1, 5) corr_goal_cols = [i for i in range(1, corr_goal_magnitude + 1)] + [j for j in range(corr_width-corr_goal_magnitude + 1, corr_width + 1)] corr_goal_locs = list(itertools.product(corr_goal_cols, [1])) # Grid World tl_grid_world_rows, tl_grid_world_cols = [i for i in range(width - 4, width)], [j for j in range(height - 4, height)] tl_grid_goal_locs = list(itertools.product(tl_grid_world_rows, tl_grid_world_cols)) tr_grid_world_rows, tr_grid_world_cols = [i for i in range(1, 4)], [j for j in range(height - 4, height)] tr_grid_goal_locs = list(itertools.product(tr_grid_world_rows, tr_grid_world_cols)) grid_goal_locs = tl_grid_goal_locs + tr_grid_goal_locs # Four room. four_room_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2), (width - 2, 1)] # SPREAD vs. TIGHT spread_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2), (width - 2, 1), (2,2)] tight_goal_locs = [(width, height), (width-1, height), (width, height-1), (width, height - 2), (width - 2, height), (width - 1, height-1), (width-2,height-2)] changing_entities = {"four_room":four_room_goal_locs, "grid":grid_goal_locs, "corridor":corr_goal_locs, "spread":spread_goal_locs, "tight":tight_goal_locs, "chain":[0.0, 0.01, 0.1, 0.5, 1.0], "combo_lock":[[3,1,2],[3,2,1],[2,3,1],[3,3,1]], "walls":make_wall_permutations(mdp_size), "lava":make_lava_permutations(mdp_size) } # MDP Probability. num_mdps = 10 if mdp_class not in changing_entities.keys() else len(changing_entities[mdp_class]) if mdp_class == "octo": num_mdps = 12 mdp_prob = 1.0 / num_mdps for i in range(num_mdps): new_mdp = {"chain":ChainMDP(reset_val=changing_entities["chain"][i%len(changing_entities["chain"])]), # "lava":GridWorldMDP(width=width, height=height, rand_init=False, step_cost=-0.001, lava_cost=0.0, lava_locs=changing_entities["lava"][i%len(changing_entities["lava"])], goal_locs=[(mdp_size-3, mdp_size-3)], is_goal_terminal=is_goal_terminal, name="lava_world", slip_prob=0.1), "four_room":FourRoomMDP(width=width, height=height, goal_locs=[changing_entities["four_room"][i % len(changing_entities["four_room"])]], is_goal_terminal=is_goal_terminal), # "octo":make_grid_world_from_file("octogrid.txt", num_goals=12, randomize=False, goal_num=i), "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[changing_entities["corridor"][i % len(changing_entities["corridor"])]], is_goal_terminal=is_goal_terminal, name="corridor"), "combo_lock":ComboLockMDP(combo=changing_entities["combo_lock"][i%len(changing_entities["combo_lock"])]), "spread":GridWorldMDP(width=width, height=height, rand_init=False, goal_locs=[changing_entities["spread"][i % len(changing_entities["spread"])]], is_goal_terminal=is_goal_terminal, name="spread_grid"), "tight":GridWorldMDP(width=width, height=height, rand_init=False, goal_locs=[changing_entities["tight"][i % len(changing_entities["tight"])]], is_goal_terminal=is_goal_terminal, name="tight_grid"), }[mdp_class] new_mdp.set_gamma(gamma) mdp_dist_dict[new_mdp] = mdp_prob return MDPDistribution(mdp_dist_dict, horizon=horizon)
def make_mdp_distr(mdp_class="grid", grid_dim=7, horizon=0): ''' Args: mdp_class (str): one of {"grid", "random"} horizon (int) Returns: (MDPDistribution) ''' mdp_dist_dict = {} height, width = grid_dim, grid_dim # Define goal locations. # Corridor. corr_width = 20 corr_goal_magnitude = random.randint(1, 5) corr_goal_cols = [i for i in xrange(1, corr_goal_magnitude)] + [ j for j in xrange(corr_width - corr_goal_magnitude, corr_width + 1) ] corr_goal_locs = list(itertools.product(corr_goal_cols, [1])) # Grid World grid_world_rows, grid_world_cols = [i for i in xrange(width - 4, width)], [ j for j in xrange(height - 4, height) ] grid_goal_locs = list(itertools.product(grid_world_rows, grid_world_cols)) # Hallway. hall_goal_locs = [(i, width) for i in range(1, height + 1)] # Four room. four_room_goal_locs = [(2, 2), (width, height), (width, 1), (1, height)] # Taxi. agent = {"x": 1, "y": 1, "has_passenger": 0} walls = [] goal_loc_dict = { "four_room": four_room_goal_locs, "hall": hall_goal_locs, "grid": grid_goal_locs, "corridor": corr_goal_locs } # MDP Probability. num_mdps = 10 if mdp_class not in goal_loc_dict.keys() else len( goal_loc_dict[mdp_class]) mdp_prob = 1.0 / num_mdps for i in range(num_mdps): new_mdp = {"hall":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[goal_loc_dict["hall"][i % len(goal_loc_dict["hall"])]]), "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[goal_loc_dict["corridor"][i % len(goal_loc_dict["corridor"])]], is_goal_terminal=True), "grid":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[goal_loc_dict["grid"][i % len(goal_loc_dict["grid"])]], is_goal_terminal=True), "four_room":FourRoomMDP(width=width, height=height, goal_locs=[goal_loc_dict["four_room"][i % len(goal_loc_dict["four_room"])]]), # THESE GOALS ARE SPECIFIED IMPLICITLY: "pblocks_grid":make_grid_world_from_file("pblocks_grid.txt", randomize=True), "chain":ChainMDP(num_states=10, reset_val=random.choice([0, 0.01, 0.05, 0.1, 0.2, 0.5])), "random":RandomMDP(num_states=40, num_rand_trans=random.randint(1,10)), "taxi":TaxiOOMDP(4, 4, slip_prob=0.0, agent=agent, walls=walls, \ passengers=[{"x":2, "y":2, "dest_x":random.randint(1,4), "dest_y":random.randint(1,4), "in_taxi":0}])}[mdp_class] mdp_dist_dict[new_mdp] = mdp_prob return MDPDistribution(mdp_dist_dict, horizon=horizon)
def make_mdp_distr(mdp_class="grid", grid_dim=9, horizon=0, step_cost=0, gamma=0.99): ''' Args: mdp_class (str): one of {"grid", "random"} horizon (int) step_cost (float) gamma (float) Returns: (MDPDistribution) ''' mdp_dist_dict = {} height, width = grid_dim, grid_dim # Define goal locations. # Corridor. corr_width = 20 corr_goal_magnitude = 1 #random.randint(1, 5) corr_goal_cols = [i for i in range(1, corr_goal_magnitude + 1)] + [ j for j in range(corr_width - corr_goal_magnitude + 1, corr_width + 1) ] corr_goal_locs = list(itertools.product(corr_goal_cols, [1])) # Grid World tl_grid_world_rows, tl_grid_world_cols = [ i for i in range(width - 4, width) ], [j for j in range(height - 4, height)] tl_grid_goal_locs = list( itertools.product(tl_grid_world_rows, tl_grid_world_cols)) tr_grid_world_rows, tr_grid_world_cols = [i for i in range(1, 4)], [ j for j in range(height - 4, height) ] tr_grid_goal_locs = list( itertools.product(tr_grid_world_rows, tr_grid_world_cols)) grid_goal_locs = tl_grid_goal_locs + tr_grid_goal_locs # Hallway. hall_goal_locs = [(i, height) for i in range(1, 30)] # Four room. four_room_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2)] #, (width - 2, 1)] # Taxi. agent = {"x": 1, "y": 1, "has_passenger": 0} walls = [] goal_loc_dict = { "four_room": four_room_goal_locs, "hall": hall_goal_locs, "grid": grid_goal_locs, "corridor": corr_goal_locs, } # MDP Probability. num_mdps = 10 if mdp_class not in goal_loc_dict.keys() else len( goal_loc_dict[mdp_class]) if mdp_class == "octo": num_mdps = 12 mdp_prob = 1.0 / num_mdps for i in range(num_mdps): new_mdp = {"hrooms":make_grid_world_from_file("hierarch_rooms.txt", num_goals=7, randomize=False), "octo":make_grid_world_from_file("octogrid.txt", num_goals=12, randomize=False, goal_num=i), "hall":GridWorldMDP(width=30, height=height, rand_init=False, goal_locs=goal_loc_dict["hall"], name="hallway", is_goal_terminal=True), "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[goal_loc_dict["corridor"][i % len(goal_loc_dict["corridor"])]], is_goal_terminal=True, name="corridor"), "grid":GridWorldMDP(width=width, height=height, rand_init=True, goal_locs=[goal_loc_dict["grid"][i % len(goal_loc_dict["grid"])]], is_goal_terminal=True), "four_room":FourRoomMDP(width=width, height=height, goal_locs=[goal_loc_dict["four_room"][i % len(goal_loc_dict["four_room"])]], is_goal_terminal=True), # THESE GOALS ARE SPECIFIED IMPLICITLY: "pblocks_grid":make_grid_world_from_file("pblocks_grid.txt", randomize=True, slip_prob=0.1), "chain":ChainMDP(num_states=10, reset_val=random.choice([0, 0.01, 0.05, 0.1, 0.2, 0.5])), "random":RandomMDP(num_states=40, num_rand_trans=random.randint(1,10)), "taxi":TaxiOOMDP(3, 4, slip_prob=0.0, agent=agent, walls=walls, \ passengers=[{"x":2, "y":1, "dest_x":random.choice([2,3]), "dest_y":random.choice([2,3]), "in_taxi":0}, {"x":1, "y":2, "dest_x":random.choice([1,2]), "dest_y":random.choice([1,4]), "in_taxi":0}])}[mdp_class] new_mdp.set_step_cost(step_cost) new_mdp.set_gamma(gamma) mdp_dist_dict[new_mdp] = mdp_prob return MDPDistribution(mdp_dist_dict, horizon=horizon)
self.prev_action = next_action self.prev_state = state return next_action def choose_action(self, state): ''' Args: (state) Returns: (str): Action ''' ###################### ### YOUR CODE HERE ### ###################### action = random.choice(self.actions) return action # Makes the cell game with 5 cells. environment = ChainMDP(5) actions = environment.get_actions() my_agent = NewAgent("ais-agent", actions) random_agent = RandomAgent(actions) list_of_agents = [my_agent, random_agent] run_agents_on_mdp(list_of_agents, environment)