コード例 #1
0
def main():
    # mdp = GridWorldMDP()
    mdp = ChainMDP()
    vi = ValueIteration(mdp)
    vi.run_vi()

    vi.print_value_func()
コード例 #2
0
def make_mdp(mdp_class="grid", grid_dim=7):
    '''
    Returns:
        (MDP)
    '''
    # Grid/Hallway stuff.
    width, height = grid_dim, grid_dim
    upworld_goal_locs = [(i, width) for i in range(1, height+1)]

    four_room_goal_locs = [(width, height)] #, (width, 1), (1, height)] # (1, height - 2), (width - 2, height - 2), (width - 1, height - 1), (width - 2, 1)]
    four_room_goal_loc = four_room_goal_locs[0]

    # Taxi stuff.
    agent = {"x":1, "y":1, "has_passenger":0}
    passengers = [{"x":grid_dim / 2, "y":grid_dim / 2, "dest_x":grid_dim-2, "dest_y":2, "in_taxi":0}]
    walls = []

    # Trench stuff
    tr_agent = {"x": 1, "y": 1, "dx": 1, "dy": 0, "dest_x": grid_dim, "dest_y": grid_dim, "has_block": 0}
    blocks = [{"x": grid_dim, "y": 1}]
    lavas = [{"x": x, "y": y} for x, y in map(lambda z: (z + 1, (grid_dim + 1) / 2), range(grid_dim))]

    # Do grids separately to avoid making error-prone domains.
    if mdp_class == "four_room":
        mdp = FourRoomMDP(width=width, height=height, goal_locs=[four_room_goal_loc])
    else:
        mdp = {"upworld":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=upworld_goal_locs),
            "chain":ChainMDP(num_states=grid_dim),
            "random":RandomMDP(num_states=50, num_rand_trans=2),
            "hanoi":HanoiMDP(num_pegs=grid_dim, num_discs=3),
            "taxi":TaxiOOMDP(width=grid_dim, height=grid_dim, agent=agent, walls=walls, passengers=passengers),
            "trench":TrenchOOMDP(width=grid_dim, height=3, agent=tr_agent, blocks=blocks, lavas=lavas)}[mdp_class]

    return mdp
コード例 #3
0
def choose_mdp(mdp_name, env_name="Asteroids-v0"):
    '''
    Args:
        mdp_name (str): one of {gym, grid, chain, taxi, ...}
        gym_env_name (str): gym environment name, like 'CartPole-v0'

    Returns:
        (MDP)
    '''

    # Other imports
    from simple_rl.tasks import ChainMDP, GridWorldMDP, FourRoomMDP, TaxiOOMDP, RandomMDP, PrisonersDilemmaMDP, RockPaperScissorsMDP, GridGameMDP

    # Taxi MDP.
    agent = {"x":1, "y":1, "has_passenger":0}
    passengers = [{"x":4, "y":3, "dest_x":2, "dest_y":2, "in_taxi":0}]
    walls = []
    if mdp_name == "gym":
        # OpenAI Gym MDP.
        try:
            from simple_rl.tasks.gym.GymMDPClass import GymMDP
        except:
            raise ValueError("(simple_rl) Error: OpenAI gym not installed.")
        return GymMDP(env_name, render=True)
    else:
        return {"grid":GridWorldMDP(5, 5, (1, 1), goal_locs=[(5, 3), (4,1)]),
                "four_room":FourRoomMDP(),
                "chain":ChainMDP(5),
                "taxi":TaxiOOMDP(10, 10, slip_prob=0.0, agent=agent, walls=walls, passengers=passengers),
                "random":RandomMDP(num_states=40, num_rand_trans=20),
                "prison":PrisonersDilemmaMDP(),
                "rps":RockPaperScissorsMDP(),
                "grid_game":GridGameMDP(),
                "multi":{0.5:RandomMDP(num_states=40, num_rand_trans=20), 0.5:RandomMDP(num_states=40, num_rand_trans=5)}}[mdp_name]
コード例 #4
0
def make_mdp(mdp_class="grid", grid_dim=7):
    '''
    Returns:
        (MDP)
    '''
    # Grid/Hallway stuff.
    width, height = grid_dim, grid_dim
    hall_goal_locs = [(i, width) for i in range(1, height + 1)]

    four_room_goal_locs = [(width, height), (width, 1), (1, height),
                           (1, height - 2), (width - 2, height - 2),
                           (width - 2, 1)]
    four_room_goal_loc = four_room_goal_locs[5]

    # Taxi stuff.
    agent = {"x": 1, "y": 1, "has_passenger": 0}
    passengers = [{
        "x": grid_dim / 2,
        "y": grid_dim / 2,
        "dest_x": grid_dim - 2,
        "dest_y": 2,
        "in_taxi": 0
    }]
    walls = []

    mdp = {
        "hall":
        GridWorldMDP(width=width,
                     height=height,
                     init_loc=(1, 1),
                     goal_locs=hall_goal_locs),
        "pblocks_grid":
        make_grid_world_from_file("pblocks_grid.txt", randomize=True),
        "grid":
        GridWorldMDP(width=width,
                     height=height,
                     init_loc=(1, 1),
                     goal_locs=[(grid_dim, grid_dim)]),
        "four_room":
        FourRoomMDP(width=width, height=height,
                    goal_locs=[four_room_goal_loc]),
        "chain":
        ChainMDP(num_states=grid_dim),
        "random":
        RandomMDP(num_states=50, num_rand_trans=2),
        "hanoi":
        HanoiMDP(num_pegs=grid_dim, num_discs=3),
        "taxi":
        TaxiOOMDP(width=grid_dim,
                  height=grid_dim,
                  slip_prob=0.0,
                  agent=agent,
                  walls=walls,
                  passengers=passengers)
    }[mdp_class]

    return mdp
コード例 #5
0
ファイル: make_mdp.py プロジェクト: RoyalGuan/simple_rl
def make_mdp(mdp_class="grid", state_size=7):
    '''
    Returns:
        (MDP)
    '''
    # Grid/Hallway stuff.
    width, height = state_size, state_size
    hall_goal_locs = [(i, width) for i in range(1, height + 1)]

    # Taxi stuff.
    agent = {"x": 1, "y": 1, "has_passenger": 0}
    passengers = [{
        "x": state_size / 2,
        "y": state_size / 2,
        "dest_x": state_size - 2,
        "dest_y": 2,
        "in_taxi": 0
    }]
    walls = []

    mdp = {
        "hall":
        GridWorldMDP(width=width,
                     height=height,
                     init_loc=(1, 1),
                     goal_locs=hall_goal_locs),
        "pblocks_grid":
        make_grid_world_from_file("pblocks_grid.txt", randomize=True),
        "grid":
        GridWorldMDP(width=width,
                     height=height,
                     init_loc=(1, 1),
                     goal_locs=[(state_size, state_size)]),
        "four_room":
        FourRoomMDP(width=width, height=height, goal_locs=[(width, height)]),
        "chain":
        ChainMDP(num_states=state_size),
        "random":
        RandomMDP(num_states=50, num_rand_trans=2),
        "taxi":
        TaxiOOMDP(width=state_size,
                  height=state_size,
                  slip_prob=0.0,
                  agent=agent,
                  walls=walls,
                  passengers=passengers)
    }[mdp_class]

    return mdp
コード例 #6
0
def make_mdp_distr(mdp_class="grid", num_mdps=15, gamma=0.99):
    '''
    Args:
        mdp_class (str): one of {"grid", "random"}
        num_mdps (int)

    Returns:
        (MDPDistribution)
    '''
    mdp_dist_dict = {}
    mdp_prob = 1.0 / num_mdps
    height, width = 10, 10

    # Make @num_mdps MDPs.
    for i in xrange(num_mdps):
        next_goals = rnd.sample([(1, 7), (7, 1), (7, 7), (6, 6), (6, 1),
                                 (1, 6)], 2)
        new_mdp = {
            "grid":
            GridWorldMDP(width=width,
                         height=height,
                         init_loc=(1, 1),
                         goal_locs=rnd.sample(
                             zip(range(1, width + 1), [height] * width), 1),
                         is_goal_terminal=True,
                         gamma=gamma),
            "four_room":
            FourRoomMDP(width=8, height=8, goal_locs=next_goals, gamma=gamma),
            "chain":
            ChainMDP(num_states=10,
                     reset_val=rnd.choice([0, 0.01, 0.05, 0.1]),
                     gamma=gamma),
            "random":
            RandomMDP(num_states=40,
                      num_rand_trans=rnd.randint(1, 10),
                      gamma=gamma)
        }[mdp_class]

        mdp_dist_dict[new_mdp] = mdp_prob

    return MDPDistribution(mdp_dist_dict)
コード例 #7
0
def choose_mdp(mdp_name, atari_game="centipede"):
    '''
    Args:
        mdp_name (str): one of {atari, grid, chain, taxi}
        atari_game (str): one of {centipede, breakout, etc.}

    Returns:
        (MDP)
    '''
    # Grid World MDP.
    grid_mdp = GridWorldMDP(10, 10, (1, 1), (10, 10))

    # Chain MDP.
    chain_mdp = ChainMDP(15)

    # Taxi MDP.
    agent = {"x": 1, "y": 1, "has_passenger": 0}
    passengers = [{"x": 5, "y": 5, "dest_x": 3, "dest_y": 3, "in_taxi": 0}]
    taxi_mdp = TaxiOOMDP(6,
                         6,
                         agent_loc=agent,
                         walls=[],
                         passengers=passengers)
    if mdp_name == "atari":
        # Atari import is here in case users don't have the Arcade Learning Environment.
        try:
            from simple_rl.tasks.atari.AtariMDPClass import AtariMDP
            return AtariMDP(rom=atari_game, grayscale=True)
        except:
            print "ERROR: you don't have the Arcade Learning Environment installed."
            print "\tTry here: https://github.com/mgbellemare/Arcade-Learning-Environment."
            quit()
    else:
        return {
            "grid": grid_mdp,
            "chain": chain_mdp,
            "taxi": taxi_mdp
        }[mdp_name]
コード例 #8
0
def make_mdp_distr(mdp_class, is_goal_terminal, mdp_size=11, horizon=0, gamma=0.99):
    '''
    Args:
        mdp_class (str): one of {"grid", "random"}
        horizon (int)
        step_cost (float)
        gamma (float)

    Returns:
        (MDPDistribution)
    '''
    mdp_dist_dict = {}

    height, width, = mdp_size, mdp_size

    # Corridor.
    corr_width = 20
    corr_goal_magnitude = 1 #random.randint(1, 5)
    corr_goal_cols = [i for i in range(1, corr_goal_magnitude + 1)] + [j for j in range(corr_width-corr_goal_magnitude + 1, corr_width + 1)]
    corr_goal_locs  = list(itertools.product(corr_goal_cols, [1]))

    # Grid World
    tl_grid_world_rows, tl_grid_world_cols = [i for i in range(width - 4, width)], [j for j in range(height - 4, height)]
    tl_grid_goal_locs = list(itertools.product(tl_grid_world_rows, tl_grid_world_cols))
    tr_grid_world_rows, tr_grid_world_cols = [i for i in range(1, 4)], [j for j in range(height - 4, height)]
    tr_grid_goal_locs = list(itertools.product(tr_grid_world_rows, tr_grid_world_cols))
    grid_goal_locs = tl_grid_goal_locs + tr_grid_goal_locs

    # Four room.
    four_room_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2), (width - 2, 1)]

    # SPREAD vs. TIGHT
    spread_goal_locs = [(width, height), (width, 1), (1, height), (1, height - 2), (width - 2, height - 2), (width - 2, 1), (2,2)]
    tight_goal_locs = [(width, height), (width-1, height), (width, height-1), (width, height - 2), (width - 2, height), (width - 1, height-1), (width-2,height-2)]

    changing_entities = {"four_room":four_room_goal_locs,
                    "grid":grid_goal_locs,
                    "corridor":corr_goal_locs,
                    "spread":spread_goal_locs,
                    "tight":tight_goal_locs,
                    "chain":[0.0, 0.01, 0.1, 0.5, 1.0],
                    "combo_lock":[[3,1,2],[3,2,1],[2,3,1],[3,3,1]],
                    "walls":make_wall_permutations(mdp_size),
                    "lava":make_lava_permutations(mdp_size)
                    }

    # MDP Probability.
    num_mdps = 10 if mdp_class not in changing_entities.keys() else len(changing_entities[mdp_class])
    if mdp_class == "octo":
        num_mdps = 12
    mdp_prob = 1.0 / num_mdps

    for i in range(num_mdps):

        new_mdp = {"chain":ChainMDP(reset_val=changing_entities["chain"][i%len(changing_entities["chain"])]),
                   # "lava":GridWorldMDP(width=width, height=height, rand_init=False, step_cost=-0.001, lava_cost=0.0, lava_locs=changing_entities["lava"][i%len(changing_entities["lava"])], goal_locs=[(mdp_size-3, mdp_size-3)], is_goal_terminal=is_goal_terminal, name="lava_world", slip_prob=0.1),
                    "four_room":FourRoomMDP(width=width, height=height, goal_locs=[changing_entities["four_room"][i % len(changing_entities["four_room"])]], is_goal_terminal=is_goal_terminal),
                   # "octo":make_grid_world_from_file("octogrid.txt", num_goals=12, randomize=False, goal_num=i),
                    "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[changing_entities["corridor"][i % len(changing_entities["corridor"])]], is_goal_terminal=is_goal_terminal, name="corridor"),
                    "combo_lock":ComboLockMDP(combo=changing_entities["combo_lock"][i%len(changing_entities["combo_lock"])]),
                    "spread":GridWorldMDP(width=width, height=height, rand_init=False, goal_locs=[changing_entities["spread"][i % len(changing_entities["spread"])]], is_goal_terminal=is_goal_terminal, name="spread_grid"),
                    "tight":GridWorldMDP(width=width, height=height, rand_init=False, goal_locs=[changing_entities["tight"][i % len(changing_entities["tight"])]], is_goal_terminal=is_goal_terminal, name="tight_grid"),
                    }[mdp_class]

        new_mdp.set_gamma(gamma)
        
        mdp_dist_dict[new_mdp] = mdp_prob

    return MDPDistribution(mdp_dist_dict, horizon=horizon)
コード例 #9
0
ファイル: make_mdp.py プロジェクト: RoyalGuan/simple_rl
def make_mdp_distr(mdp_class="grid", grid_dim=7, horizon=0):
    '''
    Args:
        mdp_class (str): one of {"grid", "random"}
        horizon (int)

    Returns:
        (MDPDistribution)
    '''
    mdp_dist_dict = {}
    height, width = grid_dim, grid_dim

    # Define goal locations.

    # Corridor.
    corr_width = 20
    corr_goal_magnitude = random.randint(1, 5)
    corr_goal_cols = [i for i in xrange(1, corr_goal_magnitude)] + [
        j for j in xrange(corr_width - corr_goal_magnitude, corr_width + 1)
    ]
    corr_goal_locs = list(itertools.product(corr_goal_cols, [1]))

    # Grid World
    grid_world_rows, grid_world_cols = [i for i in xrange(width - 4, width)], [
        j for j in xrange(height - 4, height)
    ]
    grid_goal_locs = list(itertools.product(grid_world_rows, grid_world_cols))

    # Hallway.
    hall_goal_locs = [(i, width) for i in range(1, height + 1)]

    # Four room.
    four_room_goal_locs = [(2, 2), (width, height), (width, 1), (1, height)]

    # Taxi.
    agent = {"x": 1, "y": 1, "has_passenger": 0}
    walls = []

    goal_loc_dict = {
        "four_room": four_room_goal_locs,
        "hall": hall_goal_locs,
        "grid": grid_goal_locs,
        "corridor": corr_goal_locs
    }

    # MDP Probability.
    num_mdps = 10 if mdp_class not in goal_loc_dict.keys() else len(
        goal_loc_dict[mdp_class])
    mdp_prob = 1.0 / num_mdps

    for i in range(num_mdps):

        new_mdp = {"hall":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[goal_loc_dict["hall"][i % len(goal_loc_dict["hall"])]]),
                    "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[goal_loc_dict["corridor"][i % len(goal_loc_dict["corridor"])]], is_goal_terminal=True),
                    "grid":GridWorldMDP(width=width, height=height, init_loc=(1, 1), goal_locs=[goal_loc_dict["grid"][i % len(goal_loc_dict["grid"])]], is_goal_terminal=True),
                    "four_room":FourRoomMDP(width=width, height=height, goal_locs=[goal_loc_dict["four_room"][i % len(goal_loc_dict["four_room"])]]),
                    # THESE GOALS ARE SPECIFIED IMPLICITLY:
                    "pblocks_grid":make_grid_world_from_file("pblocks_grid.txt", randomize=True),
                    "chain":ChainMDP(num_states=10, reset_val=random.choice([0, 0.01, 0.05, 0.1, 0.2, 0.5])),
                    "random":RandomMDP(num_states=40, num_rand_trans=random.randint(1,10)),
                    "taxi":TaxiOOMDP(4, 4, slip_prob=0.0, agent=agent, walls=walls, \
                                    passengers=[{"x":2, "y":2, "dest_x":random.randint(1,4), "dest_y":random.randint(1,4), "in_taxi":0}])}[mdp_class]

        mdp_dist_dict[new_mdp] = mdp_prob

    return MDPDistribution(mdp_dist_dict, horizon=horizon)
コード例 #10
0
def make_mdp_distr(mdp_class="grid",
                   grid_dim=9,
                   horizon=0,
                   step_cost=0,
                   gamma=0.99):
    '''
    Args:
        mdp_class (str): one of {"grid", "random"}
        horizon (int)
        step_cost (float)
        gamma (float)

    Returns:
        (MDPDistribution)
    '''
    mdp_dist_dict = {}
    height, width = grid_dim, grid_dim

    # Define goal locations.

    # Corridor.
    corr_width = 20
    corr_goal_magnitude = 1  #random.randint(1, 5)
    corr_goal_cols = [i for i in range(1, corr_goal_magnitude + 1)] + [
        j for j in range(corr_width - corr_goal_magnitude + 1, corr_width + 1)
    ]
    corr_goal_locs = list(itertools.product(corr_goal_cols, [1]))

    # Grid World
    tl_grid_world_rows, tl_grid_world_cols = [
        i for i in range(width - 4, width)
    ], [j for j in range(height - 4, height)]
    tl_grid_goal_locs = list(
        itertools.product(tl_grid_world_rows, tl_grid_world_cols))
    tr_grid_world_rows, tr_grid_world_cols = [i for i in range(1, 4)], [
        j for j in range(height - 4, height)
    ]
    tr_grid_goal_locs = list(
        itertools.product(tr_grid_world_rows, tr_grid_world_cols))
    grid_goal_locs = tl_grid_goal_locs + tr_grid_goal_locs

    # Hallway.
    hall_goal_locs = [(i, height) for i in range(1, 30)]

    # Four room.
    four_room_goal_locs = [(width, height), (width, 1), (1, height),
                           (1, height - 2),
                           (width - 2, height - 2)]  #, (width - 2, 1)]

    # Taxi.
    agent = {"x": 1, "y": 1, "has_passenger": 0}
    walls = []

    goal_loc_dict = {
        "four_room": four_room_goal_locs,
        "hall": hall_goal_locs,
        "grid": grid_goal_locs,
        "corridor": corr_goal_locs,
    }

    # MDP Probability.
    num_mdps = 10 if mdp_class not in goal_loc_dict.keys() else len(
        goal_loc_dict[mdp_class])
    if mdp_class == "octo":
        num_mdps = 12
    mdp_prob = 1.0 / num_mdps

    for i in range(num_mdps):

        new_mdp = {"hrooms":make_grid_world_from_file("hierarch_rooms.txt", num_goals=7, randomize=False),
                    "octo":make_grid_world_from_file("octogrid.txt", num_goals=12, randomize=False, goal_num=i),
                    "hall":GridWorldMDP(width=30, height=height, rand_init=False, goal_locs=goal_loc_dict["hall"], name="hallway", is_goal_terminal=True),
                    "corridor":GridWorldMDP(width=20, height=1, init_loc=(10, 1), goal_locs=[goal_loc_dict["corridor"][i % len(goal_loc_dict["corridor"])]], is_goal_terminal=True, name="corridor"),
                    "grid":GridWorldMDP(width=width, height=height, rand_init=True, goal_locs=[goal_loc_dict["grid"][i % len(goal_loc_dict["grid"])]], is_goal_terminal=True),
                    "four_room":FourRoomMDP(width=width, height=height, goal_locs=[goal_loc_dict["four_room"][i % len(goal_loc_dict["four_room"])]], is_goal_terminal=True),
                    # THESE GOALS ARE SPECIFIED IMPLICITLY:
                    "pblocks_grid":make_grid_world_from_file("pblocks_grid.txt", randomize=True, slip_prob=0.1),
                    "chain":ChainMDP(num_states=10, reset_val=random.choice([0, 0.01, 0.05, 0.1, 0.2, 0.5])),
                    "random":RandomMDP(num_states=40, num_rand_trans=random.randint(1,10)),
                    "taxi":TaxiOOMDP(3, 4, slip_prob=0.0, agent=agent, walls=walls, \
                                    passengers=[{"x":2, "y":1, "dest_x":random.choice([2,3]), "dest_y":random.choice([2,3]), "in_taxi":0},
                                                {"x":1, "y":2, "dest_x":random.choice([1,2]), "dest_y":random.choice([1,4]), "in_taxi":0}])}[mdp_class]

        new_mdp.set_step_cost(step_cost)
        new_mdp.set_gamma(gamma)

        mdp_dist_dict[new_mdp] = mdp_prob

    return MDPDistribution(mdp_dist_dict, horizon=horizon)
コード例 #11
0
        self.prev_action = next_action
        self.prev_state = state

        return next_action

    def choose_action(self, state):
        '''
		Args:
			(state)

		Returns:
			(str): Action
		'''
        ######################
        ### YOUR CODE HERE ###
        ######################
        action = random.choice(self.actions)

        return action


# Makes the cell game with 5 cells.
environment = ChainMDP(5)
actions = environment.get_actions()

my_agent = NewAgent("ais-agent", actions)
random_agent = RandomAgent(actions)

list_of_agents = [my_agent, random_agent]

run_agents_on_mdp(list_of_agents, environment)