コード例 #1
0
 def test_toymc_exceptions(self):
     with self.assertRaises(MonteCarloParameterMismatch):
         ToyMC(self.model, GaussianGenerator(list(reversed(self.model.parameter_names)), self.mu, self.sigma))
     with self.assertRaises(MonteCarloParameterMismatch):
         ToyMC(self.model, GaussianGenerator(["x", "y"], self.mu, self.sigma))
     with self.assertRaises(MonteCarloParameterMismatch):
         ToyMC(self.model, GaussianGenerator(self.model.parameter_names + ["z"], self.mu + [3.0], self.sigma + [3.0]))
コード例 #2
0
 def test_generatorlistexception(self):
     gen1 = GaussianGenerator(["a", "b"], [1.0, 1.0], [1.0, 1.0])
     gen2 = GaussianGenerator(["c", "d"], [1.0, 1.0], [1.0, 1.0])
     lgen = GeneratorList(gen1, gen2)
     with self.assertRaises(ValueError):
         lgen.getmu("x")
     with self.assertRaises(ValueError):
         lgen.getsigma("x")
     with self.assertRaises(ValueError):
        lgen.getcovariance("a", "x")
コード例 #3
0
    def _buildtestmc(self, cachestr=None):
        systematics = [
            ("x", [-5.0, 0.0, 5.0]),
            ("y", [-5.0, 0.0, 5.0]),
            ("z", [-10.0, -5.0, 0.0, 5.0, 10.0]),
        ]
        systematics = SplineSystematics(systematics)
        random = np.random.RandomState(seed=1223)

        def gen(N):
            for _ in xrange(N):
                coord = random.poisson(size=2)
                yield coord, 1.0, [
                    (_smear(-4.0,
                            random), _smear(1.0, random), _smear(5.0, random)),
                    (_smear(-4.0,
                            random), _smear(1.0, random), _smear(5.0, random)),
                    (_smear(-9.0, random), _smear(-4.0, random),
                     _smear(1.0, random), _smear(5.0,
                                                 random), _smear(10.0, random))
                ]

        binning = [("a", np.arange(0.0, 5.0)), ("b", np.arange(0.0, 5.0))]
        observables = ["a"]
        model = BinnedSample("simplemodel",
                             binning,
                             observables,
                             gen(10**4),
                             systematics=systematics,
                             cache_name=cachestr)
        generator = GaussianGenerator(["x", "y", "z"], [1.0, 2.0, 3.0],
                                      [1.0, 2.0, 3.0],
                                      seed=1224)
        toymc = ToyMC(model, generator)
        return toymc
コード例 #4
0
 def test_generatorlist(self):
     #make a generator list from every kind of generator we have
     mu = self.mu
     sigma = self.sigma
     cov = self.cov
     names = self.names
     gnames = ["gaus"+n for n in names]
     cnames = ["const"+n for n in names]
     mnames = ["multigaus"+n for n in names]
     gengaus = GaussianGenerator(gnames, mu, sigma, seed=12021)
     genconst = ConstantGenerator(cnames, mu)
     genmulti = MultiVariateGaussianGenerator(mnames, mu, cov, seed=2314)
     gen = GeneratorList(gengaus, genconst, genmulti)
     #generate data
     npe = 10**4
     data = np.array([gen() for _ in xrange(npe)])
     #compare to expected
     exmu = np.concatenate([mu, mu, mu])
     exsigma = np.concatenate([sigma, np.zeros(len(mu)), sigma])
     excov = np.diag(np.power(exsigma, 2))
     excov[len(mu)*2:,len(mu)*2:] = cov
     #do checks
     self._checkmean(data, mu=exmu, sigma=exsigma, gen=gen)
     self._checkstddev(data, sigma=exsigma, gen=gen)
     self._checkcovariance(data, gen=gen, cov=excov)
     return
コード例 #5
0
def speedtest_gaus(npe=_NPE, npars=_NPARS):
    n = [str(x) for x in range(npars)]
    mu = range(npars)
    sigma = range(npars)
    gen = GaussianGenerator(n, mu, sigma)
    for _ in xrange(npe):
        gen()
    return
コード例 #6
0
 def test_gaussian_withfixed(self):
     mu = self.mu
     sigma = self.sigma
     names = self.names
     gen = GaussianGenerator(names, mu, sigma, seed=19021)
     fixed = {n:ii for ii, n in enumerate(self.names[-5:])}
     fixedmu = list(self.mu)
     fixedsigma = list(self.sigma)
     for n, v in fixed.iteritems():
         fixedmu[names.index(n)] = v
         fixedsigma[names.index(n)] = 0.0
     gen.setfixed(fixed)
     npe = 10**4
     precision = 5.0*1.0/math.sqrt(npe)
     data = np.array([gen() for _ in xrange(npe)])
     self._checkmean(data, mu=fixedmu, sigma=fixedsigma, gen=gen)
     self._checkstddev(data, sigma=fixedsigma)
     self._checkcovariance(data, cov=np.diag(np.power(fixedsigma,2)))
コード例 #7
0
 def setUp(self):
     names = ["a", "b"]
     def simplemodel(pars):
         return np.copy(pars)
     simplemodel.parameter_names = names
     self.model = simplemodel
     self.mu = [1.0, 2.0]
     self.sigma = [1.0, 2.0]
     self.gen = GaussianGenerator(names, self.mu, self.sigma, seed=12912)
コード例 #8
0
 def test_fixedexcept_parameters(self):
     npe = 10**4
     mu = self.mu
     sigma = self.sigma
     names = self.names
     gen = GaussianGenerator(names, mu, sigma, seed=19021)
     for low, high in [(3, 7), (0, 10), (1, 3)]:
         fixedval = 0.5
         fixed = {n:0.5 for n in names[low:high]}
         gen.fixallexcept(fixed)
         data = np.array([gen() for _ in xrange(npe)])
         expectedmu = np.copy(mu)
         expectedsigma = np.copy(sigma)
         expectedsigma[:low] = 0.0
         expectedsigma[high:] = 0.0
         self._checkmean(data, mu=expectedmu)
         self._checkstddev(data, sigma=expectedsigma)
     return
コード例 #9
0
 def test_gaussian(self):
     mu = self.mu
     sigma = self.sigma
     names = self.names
     gen = GaussianGenerator(names, mu, sigma, seed=19021)
     npe = 10**4
     precision = 5.0*1.0/math.sqrt(npe)
     data = np.array([gen() for _ in xrange(npe)])
     self._checkmean(data, gen=gen)
     self._checkstddev(data, gen=gen)
     self._checkcovariance(data, cov=np.diag(np.power(sigma,2)), gen=gen)
コード例 #10
0
def speedtest_list(npe=_NPE, npars=_NPARS):
    names = [str(x) for x in range(npars)]
    mu = range(npars)
    sigma = range(npars)
    gaus = GaussianGenerator(["gaus" + n for n in names], mu, sigma)
    cov = np.diag(sigma)
    multigaus = MultiVariateGaussianGenerator(["multi" + n for n in names], mu,
                                              cov)
    gen = GeneratorList(gaus, multigaus)
    for _ in xrange(npe):
        gen()
    return
コード例 #11
0
    def build1flavmodel(self, iflav, jflav, mode):
        systematics = [
            ("x", [-5.0, 0.0, 5.0]),
            ("y", [-5.0, 0.0, 5.0]),
            ("z", [-5.0, 0.0, 5.0]),
        ]
        enubinning = self.enubinning
        systematics = SplineSystematics(systematics)
        random = np.random.RandomState(1222)

        def gen(N, iflav=iflav, jflav=jflav):
            for trueenu in self.enubincentres:
                recoenu = trueenu
                for flavbin in [0.0, 1.0, 2.0, 3.0]:
                    if flavbin == jflav:
                        eff = 1.0
                    else:
                        eff = 1e-9
                    if flavbin == iflav:
                        weight = 1.0
                    else:
                        weight = 1e-9
                    coord = (trueenu, flavbin, recoenu)
                    yield coord, eff * weight, weight, [(-4.0, 1.0, 6.0),
                                                        (-4.0, 1.0, 6.0),
                                                        (-4.0, 1.0, 6.0)]

        binning = [("trueenu", enubinning), ("nupdg", np.arange(0.0, 5.0)),
                   ("recoenu", enubinning)]
        observables = ["recoenu"]
        model = BinnedSampleWithOscillation("flatmodelwithoscillation",
                                            binning,
                                            observables,
                                            gen(10**4),
                                            enuaxis="trueenu",
                                            flavaxis="nupdg",
                                            distance=295.0,
                                            systematics=systematics,
                                            probabilitycalc=None,
                                            oscparmode=mode)
        oscgen = OscillationParametersPrior(seed=1225,
                                            oscparmode=mode).generator
        systgen = GaussianGenerator(["x", "y", "z"], [0.0, 0.0, 0.0],
                                    [0.1, 0.1, 0.1],
                                    seed=1226)
        #toymc = ToyMC(model, GeneratorList(oscgen))
        toymc = ToyMC(model, GeneratorList(oscgen, systgen))
        return toymc
コード例 #12
0
 def test_generatorexception(self):
     g = Generator(["a","b"], [0.0, 0.0])
     with self.assertRaises(NotImplementedError):
         g() # not implemented method
     with self.assertRaises(NotImplementedError):
         g.getsigma("a") # not implemented method
     with self.assertRaises(ValueError):
         g.setfixed({"x":0.0}) # fix non-existant parameter
     with self.assertRaises(ValueError):
         Generator(["a","b"], [0.0, 0.0, 0.0]) # wrong num parameters
     with self.assertRaises(ValueError):
         GaussianGenerator(["a","b"], [0.0, 0.0], [1.0, 1.0, 1.0]) # wrong num parameters (gaus)
     with self.assertRaises(ValueError):
         MultiVariateGaussianGenerator(["a","b"], [0.0, 0.0], [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) # wrong num parameters (gaus)
     with self.assertRaises(ValueError):
         Generator(["a","a"], [0.0, 0.0]) # duplicate par name
コード例 #13
0
    def _buildtestmc(self, cachestr=None):
        systematics = [
            ("x", [-5.0, 0.0, 5.0]),
            ("y", [-5.0, 0.0, 5.0]),
            ("z", [-5.0, 0.0, 5.0]),
        ]
        systematics = SplineSystematics(systematics)
        random = np.random.RandomState(1222)

        def gen(N):
            for _ in xrange(N):
                nupdg = random.uniform(0.0, 4.0)
                trueenu = random.uniform(0.0, 5.0)
                recoenu = _smear(trueenu, random)
                coord = (trueenu, nupdg, recoenu)
                yield coord, 1.0, 1.0, [
                    (_smear(-4.0,
                            random), _smear(1.0, random), _smear(6.0, random)),
                    (_smear(-4.0,
                            random), _smear(1.0, random), _smear(6.0, random)),
                    (_smear(-4.0, random), _smear(1.0,
                                                  random), _smear(6.0, random))
                ]

        binning = [("trueenu", np.linspace(0.0, 5.0, num=10.0)),
                   ("nupdg", np.arange(0.0, 5.0)),
                   ("recoenu", np.linspace(0.0, 5.0, num=10.0))]
        observables = ["recoenu"]
        model = BinnedSampleWithOscillation("simplemodelwithoscillation",
                                            binning,
                                            observables,
                                            gen(10**4),
                                            enuaxis="trueenu",
                                            flavaxis="nupdg",
                                            distance=295.0,
                                            systematics=systematics,
                                            probabilitycalc=None)
        oscgen = OscillationParametersPrior(seed=1225).generator
        systgen = GaussianGenerator(["x", "y", "z"], [0.0, 0.0, 0.0],
                                    [0.1, 0.1, 0.1],
                                    seed=1226)
        #toymc = ToyMC(model, GeneratorList(oscgen))
        toymc = ToyMC(model, GeneratorList(oscgen, systgen))
        return toymc
コード例 #14
0
 def test_mean_and_stddev(self):
     expectedmu = np.arange(0.0, 10.0)
     names = ["par" + str(x) for x in expectedmu]
     expectedsigma = np.arange(0.0, 10.0)
     mu = Mean()
     gen = GaussianGenerator(names, expectedmu, expectedsigma, seed=1290)
     statistics = [
         Mean(), StandardDeviation(),
         FractionalStandardDeviation()
     ]
     with nostdout():
         calculate_statistics(gen, statistics, 10**4, name="test")
     for s, expected in itertools.izip_longest(
             statistics,
         [expectedmu, expectedsigma,
          safedivide(expectedsigma, expectedmu)]):
         for x, err, exp in itertools.izip_longest(s.eval(), s.err(),
                                                   expected):
             self.assertAlmostEquals(x, exp, delta=5.0 * err)
     return
コード例 #15
0
 def test_roothistogram(self):
     names = ["a", "b"]
     expectedmu = np.array([2.0, 4.0])
     expectedsigma = np.array([1.0, 2.0])
     gen = GaussianGenerator(names, expectedmu, expectedsigma)
     #try 3 ways of constructing object to ensure all code paths are tested
     hist1 = RootHistogram("testhist", "testhist")
     hist2 = RootHistogram("testhist", "testhist", range=[-5.0, 5.0])
     hist3 = RootHistogram("testhist",
                           "testhist",
                           range=[(-5.0, 5.0), (-10., 10.)])
     mean = Mean()
     sigma = StandardDeviation()
     calculate_statistics(gen, [hist1, hist2, hist3, mean, sigma], 10**4)
     for h1, h2, h3, mu, sigma in itertools.izip_longest(
             hist1.eval(), hist2.eval(), hist2.eval(), mean.eval(),
             sigma.eval()):
         self.assertAlmostEqual(h1.GetMean(), mu)
         self.assertAlmostEqual(h1.GetRMS(), sigma)
         self.assertAlmostEqual(h2.GetMean(), mu)
         self.assertAlmostEqual(h2.GetRMS(), sigma)
         self.assertAlmostEqual(h3.GetMean(), mu)
         self.assertAlmostEqual(h3.GetRMS(), sigma)
     return
コード例 #16
0
 def test_fixed_parameters(self):
     npe = 10**4
     mu = self.mu
     sigma = self.sigma
     names = self.names
     gen = GaussianGenerator(names, mu, sigma, seed=19021)
     for low, high in [(3, 7), (0, 10), (1, 3)]:
         fixedval = 0.5
         fixed = {n:0.5 for n in names[low:high]}
         gen.setfixed(fixed)
         data = np.array([gen() for _ in xrange(npe)])
         expectedmu = np.copy(mu)
         expectedmu[low:high] = fixedval
         expectedsigma = np.copy(sigma)
         expectedsigma[low:high] = 0.0
         self._checkmean(data, mu=expectedmu)
         self._checkstddev(data, sigma=expectedsigma)
     #check switching if off we get original behaviour
     gen.setfixed(None)
     data = np.array([gen() for _ in xrange(npe)])
     self._checkmean(data, mu=mu)
     self._checkstddev(data, sigma=sigma)
     return
コード例 #17
0
ファイル: priors.py プロジェクト: zhufengGNSS/simplot
 def __init__(self, parameter_names, mu, sigma, seed=None):
     gen = GaussianGenerator(parameter_names, mu, sigma, seed=seed)
     lhd = GaussianLikelihood(parameter_names, mu, sigma)
     super(GaussianPrior, self).__init__(gen, lhd)