コード例 #1
0
    def test_change_resolution(self):
        """
        Check that we can change mpol and ntor.
        """
        for mpol in [1, 2]:
            for ntor in [0, 1]:
                s = SurfaceRZFourier(mpol=mpol, ntor=ntor)
                n = len(s.get_dofs())
                s.set_dofs((np.random.rand(n) - 0.5) * 0.01)
                s.set_rc(0, 0, 1.0)
                s.set_rc(1, 0, 0.1)
                s.set_zs(1, 0, 0.13)
                v1 = s.volume()
                a1 = s.area()

                s.change_resolution(mpol + 1, ntor)
                s.recalculate = True
                v2 = s.volume()
                a2 = s.area()
                self.assertAlmostEqual(v1, v2)
                self.assertAlmostEqual(a1, a2)

                s.change_resolution(mpol, ntor + 1)
                s.recalculate = True
                v2 = s.volume()
                a2 = s.area()
                self.assertAlmostEqual(v1, v2)
                self.assertAlmostEqual(a1, a2)

                s.change_resolution(mpol + 1, ntor + 1)
                s.recalculate = True
                v2 = s.volume()
                a2 = s.area()
                self.assertAlmostEqual(v1, v2)
                self.assertAlmostEqual(a1, a2)
コード例 #2
0
    def test_2dof_surface_opt(self):
        """
        Optimize the minor radius and elongation of an axisymmetric torus to
        obtain a desired volume and area.
        """

        for solver in solvers:
            desired_volume = 0.6
            desired_area = 8.0

            # Start with a default surface, which is axisymmetric with major
            # radius 1 and minor radius 0.1.
            surf = SurfaceRZFourier(quadpoints_phi=62, quadpoints_theta=63)

            # Set initial surface shape. It helps to make zs(1,0) larger
            # than rc(1,0) since there are two solutions to this
            # optimization problem, and for testing we want to find one
            # rather than the other.
            surf.set_zs(1, 0, 0.2)

            # Parameters are all non-fixed by default, meaning they will be
            # optimized.  You can choose to exclude any subset of the variables
            # from the space of independent variables by setting their 'fixed'
            # property to True.
            surf.set_fixed('rc(0,0)')

            # Each function you want in the objective function is then
            # equipped with a shift and weight, to become a term in a
            # least-squares objective function. A list of terms are
            # combined to form a nonlinear-least-squares problem.
            prob = LeastSquaresProblem([(surf.volume, desired_volume, 1),
                                        (surf.area, desired_area, 1)])

            # Verify the state vector and names are what we expect
            np.testing.assert_allclose(prob.x, [0.1, 0.2])
            self.assertEqual(prob.dofs.names[0][:28],
                             'rc(1,0) of SurfaceRZFourier ')
            self.assertEqual(prob.dofs.names[1][:28],
                             'zs(1,0) of SurfaceRZFourier ')

            # Solve the minimization problem:
            solver(prob)

            # Check results
            self.assertAlmostEqual(surf.get_rc(0, 0), 1.0, places=13)
            self.assertAlmostEqual(surf.get_rc(1, 0),
                                   0.10962565115956417,
                                   places=13)
            self.assertAlmostEqual(surf.get_zs(0, 0), 0.0, places=13)
            self.assertAlmostEqual(surf.get_zs(1, 0),
                                   0.27727411213693337,
                                   places=13)
            self.assertAlmostEqual(surf.volume(), desired_volume, places=8)
            self.assertAlmostEqual(surf.area(), desired_area, places=8)
            self.assertLess(np.abs(prob.objective()), 1.0e-15)
コード例 #3
0
    def test_area_volume(self):
        """
        Test the calculation of area and volume for an axisymmetric surface
        """
        s = SurfaceRZFourier()
        s.rc[0, 0] = 1.3
        s.rc[1, 0] = 0.4
        s.zs[1, 0] = 0.2

        true_area = 15.827322032265993
        true_volume = 2.0528777154265874
        self.assertAlmostEqual(s.area(), true_area, places=4)
        self.assertAlmostEqual(s.volume(), true_volume, places=3)
コード例 #4
0
desired_area = 8.0

# Start with a default surface, which is axisymmetric with major
# radius 1 and minor radius 0.1.
surf = SurfaceRZFourier()

# Parameters are all non-fixed by default, meaning they will be
# optimized.  You can choose to exclude any subset of the variables
# from the space of independent variables by setting their 'fixed'
# property to True.
surf.set_fixed('rc(0,0)')

# Each target function is then equipped with a shift and weight, to
# become a term in a least-squares objective function
term1 = (surf.volume, desired_volume, 1)
term2 = (surf.area, desired_area, 1)

# A list of terms are combined to form a nonlinear-least-squares
# problem.
prob = LeastSquaresProblem([term1, term2])

# Solve the minimization problem:
least_squares_serial_solve(prob)

print("At the optimum,")
print(" rc(m=1,n=0) = ", surf.get_rc(1, 0))
print(" zs(m=1,n=0) = ", surf.get_zs(1, 0))
print(" volume = ", surf.volume())
print(" area = ", surf.area())
print(" objective function = ", prob.objective())