コード例 #1
0
 def add_hydrogens_by_openmm(self):
     from simtk.openmm.app import ForceField, Modeller, PDBFile
     from pdbfixer import PDBFixer
     fixer = PDBFixer(self.name)
     field = ForceField('amber99sb.xml', 'tip3p.xml')
     fixer.findMissingResidues()
     fixer.findMissingAtoms()
     fixer.addMissingAtoms()
     fixer.addMissingHydrogens(7.0)
     modeller = Modeller(fixer.topology, fixer.positions)
     modeller.addHydrogens(forcefield=field)
     modeller.deleteWater()
     PDBFile.writeModel(modeller.topology, modeller.positions, open(self.shotname+'_h.pdb', 'w'))
コード例 #2
0
ファイル: fetch.py プロジェクト: pgromano/fetch_pdb
def check_hydrogens(molecule, ID):
    # Check that Hydrogens are in structure
    if len(molecule.top.select("name == H")) == 0:
        # If absent, then add Hydrogens using the Amber99sb force-field
        try:
            from simtk.openmm.app import PDBFile, Modeller, ForceField
            pdb = PDBFile(ID + ".pdb")
            modeller = Modeller(pdb.topology, pdb.positions)
            forcefield = ForceField('amber99sb.xml','tip3p.xml')
            modeller.addHydrogens(forcefield)
            PDBFile.writeFile(modeller.topology, modeller.positions, open(ID + ".pdb", 'w'))
            molecule = md.load(ID + ".pdb").remove_solvent()
        except:
            warnings.warn("""PDB topology missing Hydrogens. Either manually add
            or install OpenMM through SIMTK to automatically correct.""")
            pass
    return molecule
def check_hydrogens(molecule, ID):
    # Check that Hydrogens are in structure
    if len(molecule.top.select("name == H")) == 0:
        # If absent, then add Hydrogens using the Amber99sb force-field
        try:
            from simtk.openmm.app import PDBFile, Modeller, ForceField
            pdb = PDBFile(ID + ".pdb")
            modeller = Modeller(pdb.topology, pdb.positions)
            forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
            modeller.addHydrogens(forcefield)
            PDBFile.writeFile(modeller.topology, modeller.positions,
                              open(ID + ".pdb", 'w'))
            molecule = md.load(ID + ".pdb").remove_solvent()
        except:
            warnings.warn(
                """PDB topology missing Hydrogens. Either manually add
            or install OpenMM through SIMTK to automatically correct.""")
            pass
    return molecule
コード例 #4
0
class MoleculeUtil(object):
    """
    A class for managing a molecule defined by a PDB file
    """
    np.random.seed(20)

    def __init__(self, pdb_path, offset_size=2):
        # OpenMM init
        self.pdb_path = pdb_path
        self.pdb = PDBFile(self.pdb_path)
        self.forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
        self.modeller = Modeller(self.pdb.topology, self.pdb.positions)

        # Remove any water that might be present in the PDB file
        self.modeller.deleteWater()

        # Add any hydrogens not present
        self.modeller.addHydrogens(self.forcefield)
        self.system = self.forcefield.createSystem(self.modeller.topology,
                                                   nonbondedMethod=PME,
                                                   nonbondedCutoff=1 *
                                                   u.nanometer,
                                                   constraints=HBonds)
        self.integrator = LangevinIntegrator(300 * u.kelvin, 1 / u.picosecond,
                                             0.002 * u.picoseconds)
        self.simulation = Simulation(self.modeller.topology, self.system,
                                     self.integrator)
        self.pdb_positions = self.modeller.getPositions()

        # Initialize bond dictionary and positions for chemcoord
        self.cc_bonds = {}
        self.offset_size = offset_size
        self._init_pdb_bonds()
        self.set_cc_positions(self.pdb_positions)

        # Perform initial minimization, which updates self.pdb_positions
        min_energy, min_positions = self.run_simulation()

        # Reset the positions after the minimization
        self.set_cc_positions(self.pdb_positions)
        self.torsion_indices = self._get_torsion_indices()
        self.starting_positions = min_positions
        self.starting_torsions = np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T
        self.seed_offsets()

    def _add_backbone_restraint(self):
        # https://github.com/ParmEd/ParmEd/wiki/OpenMM-Tricks-and-Recipes#positional-restraints
        positions = self.modeller.getPositions()
        force = CustomExternalForce('k*((x-x0)^2+(y-y0)^2+(z-z0)^2)')
        force.addGlobalParameter(
            'k', 5.0 * u.kilocalories_per_mole / u.angstroms**2)
        force.addPerParticleParameter('x0')
        force.addPerParticleParameter('y0')
        force.addPerParticleParameter('z0')

        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                coord = positions[index]
                force.addParticle(index, coord.value_in_unit(u.nanometers))

        self.restraint_force_id = self.system.addForce(force)

    def _remove_backbone_restraint(self):
        self.system.removeForce(self.restraint_force_id)

    def _fix_backbone(self):
        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                self.system.setParticleMass(index, 0)

    def seed_offsets(self):
        self.offsets = np.random.choice([0, 0, -1, 1],
                                        self.starting_torsions.shape)

    def get_torsions(self):
        return np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T

    def set_torsions(self, new_torsions):
        self.zmat.safe_loc[self.torsion_indices[:, 0],
                           'dihedral'] = new_torsions[:, 0]
        self.zmat.safe_loc[self.torsion_indices[:, 1],
                           'dihedral'] = new_torsions[:, 1]

    def get_offset_torsions(self, scale_factor):
        """
        Calculates and returns new torsion angles based on randomly generated
        offsets.

        Args:
            scale_factor: the relative scale of the offset relative to
                          self.offset_size
        Returns:
            The new torsion angles
        """
        total_offset = self.offset_size * scale_factor
        new_torsions = np.zeros(shape=self.starting_torsions.shape)
        new_torsions[:, 0] = self.starting_torsions[:, 0] + \
            (self.offsets[:, 0] * total_offset)
        new_torsions[:, 1] = self.starting_torsions[:, 1] + \
            (self.offsets[:, 1] * total_offset)
        return new_torsions

    def run_simulation(self):
        """
        Run a simulation to calculate the current configuration's energy level.
        Note that the atoms will likely move somewhat during the calculation,
        since energy minimization is used.

        Returns:
            A tuple of the form (potential_energy, updated_positions)
        """
        # Delete solvent that's based on previous positions
        cartesian = self.zmat.get_cartesian().sort_index()
        self.simulation.context.setPositions([
            Vec3(x, y, z)
            for x, y, z in zip(cartesian['x'], cartesian['y'], cartesian['z'])
        ])

        # self._add_backbone_restraint()
        # self._fix_backbone()

        self.modeller.addSolvent(self.forcefield, padding=1.0 * u.nanometer)
        self.simulation.minimizeEnergy(maxIterations=200)
        state = self.simulation.context.getState(getEnergy=True,
                                                 getPositions=True)
        p_energy = state.getPotentialEnergy()
        positions = state.getPositions(asNumpy=True)

        # Clean up - remove solvent and backbone restraint (for next iteration)
        self.modeller.deleteWater()

        # self._remove_backbone_restraint()

        return p_energy, positions

    def _init_pdb_bonds(self):
        """Construct a dictionary describing the PDB's bonds for chemcoord use"""
        for index in range(self.modeller.topology.getNumAtoms()):
            self.cc_bonds[index] = set()

        for bond in self.modeller.topology.bonds():
            self.cc_bonds[bond[0].index].add(bond[1].index)
            self.cc_bonds[bond[1].index].add(bond[0].index)

    def set_cc_positions(self, positions):
        """
        Calculates the zmat from an OpenMM modeller

        Args:
            positions (list): A list 
        """
        cc_df = self._get_cartesian_df(positions)
        self.cartesian = cc.Cartesian(cc_df)
        self.cartesian.set_bonds(self.cc_bonds)
        self.cartesian._give_val_sorted_bond_dict(use_lookup=True)
        self.zmat = self.cartesian.get_zmat(use_lookup=True)

    def _get_cartesian_df(self, positions):
        cc_positions = np.zeros((3, self.modeller.topology.getNumAtoms()))
        atom_names = []
        for index, atom in enumerate(self.modeller.topology.atoms()):
            pos = positions[index] / u.nanometer
            atom_names.append(atom.name)
            cc_positions[:, index] = pos

        cc_df = pd.DataFrame({
            'atom': atom_names,
            'x': cc_positions[0, :],
            'y': cc_positions[1, :],
            'z': cc_positions[2, :]
        })
        return cc_df

    def _get_torsion_indices(self):
        """
        Calculates indices into the zmatrix which correspond to phi
        and psi angles.

        Args:
            zmat: the zmatrix specifying the molecule
        Returns:
            a numpy.array, with first column as phi_indices, second column
            as psi_indices
        """
        phi_indices = []
        psi_indices = []

        for i in range(len(self.zmat.index)):
            b_index = self.zmat.loc[i, 'b']
            a_index = self.zmat.loc[i, 'a']
            d_index = self.zmat.loc[i, 'd']

            # If this molecule references a magic string (origin, e_x, e_y, e_z, etc)
            if isinstance(b_index, str) or isinstance(
                    a_index, str) or isinstance(d_index, str):
                continue

            # Psi angles
            if (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'C') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'C') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'N') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'N') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

        return np.array([phi_indices, psi_indices]).T
コード例 #5
0
ファイル: funnel.py プロジェクト: ZenPylon/folding-funnel
"""
Testing the funnel hypothesis
"""
from math import pi
from simtk.openmm.app import PDBFile, ForceField, Modeller, PME, HBonds
from simtk.openmm import LangevinIntegrator
from simtk.unit import kelvin, nanometer, picosecond, picoseconds
import chemcoord as cc
import numpy as np
import pandas as pd
import util

pdb = PDBFile('1ubq.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
modeller = Modeller(pdb.topology, pdb.positions)
modeller.addHydrogens(forcefield)

system = forcefield.createSystem(modeller.topology,
                                 nonbondedMethod=PME,
                                 nonbondedCutoff=1 * nanometer,
                                 constraints=HBonds)
integrator = LangevinIntegrator(300 * kelvin, 1 / picosecond,
                                0.002 * picoseconds)
pdb_bonds = modeller.topology.bonds()
atoms = modeller.topology.atoms()
positions = modeller.getPositions()

cc_bonds = {}
cc_positions = np.zeros((3, modeller.topology.getNumAtoms()))
atom_names = []