def main(): domain = [(4, 10)]*(len(all_nodes)*2+2) # genetic alg optimal_solution1 = genetic_alg_general.genetic_alg_general(domain, count_cross) print optimal_solution1 draw_solution(optimal_solution1[1]) # simulated annealing optimal_solution2 = simulated_annealing_general.simulated_annealing(domain, count_cross) print optimal_solution2 draw_solution(optimal_solution2[0])
def main(): # random search optimization optimal_vec = optimal_assign() print_solution(optimal_vec) num_slots = len(top_choices) domain = [(0,len(game_groups)-1)]*num_slots # ************* try genetic optimization ****************# genetic_optimal_vec = genetic_alg_general.genetic_alg_general(domain, assign_cost)[1] print_solution(genetic_optimal_vec) # ************ try simulated annealing ****************# sa_optimal_vec, optimal_cost = simulated_annealing_general.simulated_annealing(domain, assign_cost) print optimal_cost print_solution(sa_optimal_vec)
def main(): # random search optimization optimal_vec = optimal_assign() print_solution(optimal_vec) num_slots = len(top_choices) domain = [(0, len(game_groups) - 1)] * num_slots # ************* try genetic optimization ****************# genetic_optimal_vec = genetic_alg_general.genetic_alg_general( domain, assign_cost)[1] print_solution(genetic_optimal_vec) # ************ try simulated annealing ****************# sa_optimal_vec, optimal_cost = simulated_annealing_general.simulated_annealing( domain, assign_cost) print optimal_cost print_solution(sa_optimal_vec)