コード例 #1
0
def train_evaluate(agent_params, num_train=100, num_eval=100):
    """
    Run num_train training trials and num_eval evaluation trials for a
    LearningAgent initialized with a single set of agent_params.

    Returns a TrainEvalPerformance that captures performances and agent info.
    """
    sim, e = initialize_simulator_environment(agent_params)

    training_perfs = sim.run(num_train)
    e.primary_agent.stop_learning()
    evaluation_perfs = sim.run(num_eval)
    print

    agent_info = e.primary_agent.agent_info
    return TrainEvalPerformance(training_perfs, evaluation_perfs, agent_info)
コード例 #2
0
def train_evaluate(agent_params, num_train=100, num_eval=100):
    """
    Run num_train training trials and num_eval evaluation trials for a
    LearningAgent initialized with a single set of agent_params.

    Returns a TrainEvalPerformance that captures performances and agent info.
    """
    sim, e = initialize_simulator_environment(agent_params)

    training_perfs = sim.run(num_train)
    e.primary_agent.stop_learning()
    evaluation_perfs = sim.run(num_eval)
    print

    agent_info = e.primary_agent.agent_info
    return TrainEvalPerformance(training_perfs, evaluation_perfs, agent_info)
コード例 #3
0
ファイル: tests.py プロジェクト: hoxiea/udacity-ml-smartcab
 def test_six_agentstates_total(self):
     sim, e = initialize_simulator_environment()
     agentstates = list(e.primary_agent.generate_all_agentstates())
     self.assertEqual(len(agentstates), 6)