コード例 #1
0
    def step(self, theta, E_old, x_obs, mod, params):
        # (1. Generate)
        theta_new = self.proposal(theta, E_old)
        theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max'])

        # (2. Evaluate)
        E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method)

        # (3. Select)
        theta_cat = np.concatenate((theta, theta_new), 0)
        E_cat = np.concatenate((E_old, E_new), 0)

        indx = np.argsort(E_cat.squeeze())

        return theta_cat[indx[:theta.shape[0]],:], E_cat[indx[:theta.shape[0]],:]
コード例 #2
0
    def step(self, theta, E_old, x_obs, mod, params):
        # (1. Generate)
        theta_new = self.proposal(theta, E_old)
        theta_new = np.clip(theta_new, a_min=self.config_method['clip_min'], a_max=self.config_method['clip_max'])

        # (2. Evaluate)
        E_new = calculate_fitness(x_obs, theta_new, mod, params, self.dist, self.config_model, self.config_method)

        # (3. Select)
        m = (E_new < E_old) * 1.

        if np.mean(m) < 0.2:
            self.sigma = self.sigma * self.c
        elif np.mean(m) > 0.2:
            self.sigma = self.sigma / self.c

        return m * theta_new + (1. - m) * theta, m * E_new + (1. - m) * E_old
コード例 #3
0
def run(dir_method,
        json_method,
        dir_model,
        json_model,
        dir_results,
        dir_solver,
        json_solver,
        dir_data=None,
        file_data=None,
        exp_sign='_exp_'):

    config_method = Config(os.path.join(dir_method, json_method))
    config_model = Config(os.path.join(dir_model, json_model))

    config_solver = Config(os.path.join(dir_solver, json_solver))

    # Experiment name
    exp_name = exp_sign + config_method.config['method_name'] + '_'

    # Load PySCES model
    mod = pysces.model(config_model.config['mod_name'], dir=dir_model)

    # Solver settings
    mod.__settings__["mode_sim_max_iter"] = config_solver.config[
        "mode_sim_max_iter"]
    mod.__settings__['lsoda_atol'] = config_solver.config['lsoda_atol']
    mod.__settings__['lsoda_rtol'] = config_solver.config['lsoda_rtol']
    mod.__settings__['lsoda_mxordn'] = config_solver.config['lsoda_mxordn']
    mod.__settings__['lsoda_mxords'] = config_solver.config['lsoda_mxords']
    mod.__settings__['lsoda_mxstep'] = config_solver.config['lsoda_mxstep']

    # =====REAL DATA PREPARATION=====
    # Remove fixed_species from params. We do it only once.
    params = remove_fixed(mod.parameters,
                          mod.fixed_species,
                          compartment=config_model.config['compartment'])

    if dir_data is not None:
        config_model.config['real_data'] = True
        mod.sim_start = config_model.config['sim_start']
        mod.sim_end = config_model.config['sim_end']
        mod.sim_points = config_model.config['sim_points']
        x_obs = np.load(os.path.join(dir_data, file_data))
    else:
        config_model.config['real_data'] = False
        x_obs, t = generate_data(mod,
                                 params,
                                 sim_start=config_model.config['sim_start'],
                                 sim_end=config_model.config['sim_end'],
                                 sim_points=config_model.config['sim_points'],
                                 noise=config_model.config['noise'])

        real_params = read_real_parameters(mod, params)
        real_params_array = dict_to_array(real_params, params)

        np.save(os.path.join(dir_results, exp_name + 'x_obs.npy'), x_obs)
        np.save(os.path.join(dir_results, exp_name + 't.npy'), t)
        np.save(os.path.join(dir_results, exp_name + 'real_params_array.npy'),
                real_params_array)

        json.dump(
            real_params,
            open(os.path.join(dir_results, exp_name + 'real_params.json'),
                 "w"))
        json.dump(
            params,
            open(os.path.join(dir_results, exp_name + 'params.json'), "w"))

    pickle.dump(mod, open(os.path.join(dir_results, exp_name + 'mod.pkl'),
                          "wb"))

    # =======EXPERIMENT=======
    # dump, just in case, configs
    pickle.dump(
        config_method.config,
        open(os.path.join(dir_results, exp_name + 'config_method.pkl'), "wb"))
    pickle.dump(
        config_model.config,
        open(os.path.join(dir_results, exp_name + 'config_model.pkl'), "wb"))

    # Init method
    # -get all classes in the file
    classes = [x for x in dir(EA) if isclass(getattr(EA, x))]
    # -check whether the provided name is available
    assert config_method.config[
        'method_name'] in classes, 'Wrong name of the method! Please pick one of the following methods: {}'.format(
            classes)

    # -initialize the appropriate class
    module = __import__("algorithms.population_optimization_algorithms",
                        fromlist=[config_method.config['method_name']])
    my_class = getattr(module, config_method.config['method_name'])
    method = my_class(config_method.config, config_model.config)

    # Init parameters
    theta = np.random.uniform(low=config_model.config['low'],
                              high=config_model.config['high'],
                              size=(config_method.config['pop_size'],
                                    len(params)))
    theta = np.clip(theta,
                    a_min=config_method.config['clip_min'],
                    a_max=config_method.config['clip_max'])
    # Calcute their energy
    E = calculate_fitness(x_obs,
                          theta,
                          mod,
                          params,
                          dist=method.dist,
                          config_model=config_model.config,
                          config_method=config_method.config)

    # -=Start experiment=-
    best_E = [np.min(E)]

    all_E = E
    all_theta = theta

    clock_start = time.time()
    print('START ~~~~~~>')
    g = config_method.config['generations']
    for i in range(g):
        print(f'========> Generation {i+1}/{g}')
        theta, E = method.step(theta, E, x_obs, mod, params)
        if np.min(E) < best_E[-1]:
            best_E.append(np.min(E))
        else:
            best_E.append(best_E[-1])

        all_theta = np.concatenate((all_theta, theta), 0)
        all_E = np.concatenate((all_E, E), 0)
        # SAVING
        np.save(os.path.join(dir_results, exp_name + 'all_theta.npy'),
                all_theta)
        np.save(os.path.join(dir_results, exp_name + 'all_E.npy'), all_E)
        np.save(os.path.join(dir_results, exp_name + 'best_E.npy'),
                np.asarray(best_E))

        # early stopping
        if i > config_method.config['patience']:
            if best_E[-config_method.config['patience']] == best_E[-1]:
                break
    print('~~~~~~> END')
    clock_stop = time.time()
    print('Time elapsed: {}'.format(clock_stop - clock_start))
    np.save(os.path.join(dir_results, exp_name + 'time.npy'),
            np.asarray(clock_stop - clock_start))
コード例 #4
0
ファイル: popt.py プロジェクト: jmtomczak/popi
def run(mod_name='wolf1',
        sim_start=0.0,
        sim_end=30.,
        sim_points=30,
        exp_sign='exp_1_',
        method_name='DE',
        generations=5,
        pop_size=500,
        clip_min=0.,
        clip_max=15.,
        a=-100.,
        b=100.,
        scale=1.,
        p=-1.,
        std=0.1,
        gamma=0.75,
        CR=0.9,
        best=False,
        dist_name='truncnorm',
        low=0.,
        high=100.,
        indices=None,
        compartment=True,
        patience=100,
        noise=0.1,
        dir_model='C:\\Dev\\github\\abcde\\',
        slash='\\'):

    # Experiment name
    exp_name = exp_sign + method_name + '_'

    # Load PySCES model
    mod = pysces.model(mod_name, dir=dir_model)

    # Solver settings
    mod.__settings__["mode_sim_max_iter"] = 0
    mod.__settings__['lsoda_atol'] = 1.0e-012
    mod.__settings__['lsoda_rtol'] = 1.0e-007
    mod.__settings__['lsoda_mxordn'] = 12
    mod.__settings__['lsoda_mxords'] = 5
    mod.__settings__['lsoda_mxstep'] = 0

    # =====REAL DATA PREPARATION=====
    # Remove fixed_species from params. Do it only once
    params = remove_fixed(mod.parameters,
                          mod.fixed_species,
                          compartment=compartment)

    x_obs, t = generate_data(mod,
                             params,
                             sim_start=sim_start,
                             sim_end=sim_end,
                             sim_points=sim_points,
                             noise=noise)

    real_params = read_real_parameters(mod, params)
    real_params_array = dict_to_array(real_params, params)

    np.save(dir_model + 'results' + slash + exp_name + 'x_obs.npy', x_obs)
    np.save(dir_model + 'results' + slash + exp_name + 't.npy', t)
    np.save(dir_model + 'results' + slash + exp_name + 'real_params_array.npy',
            real_params_array)

    json.dump(
        real_params,
        open(dir_model + 'results' + slash + exp_name + 'real_params.json',
             "w"))
    json.dump(
        params,
        open(dir_model + 'results' + slash + exp_name + 'params.json', "w"))

    pickle.dump(
        mod, open(dir_model + 'results' + slash + exp_name + 'mod.pkl', "wb"))

    # =======EXPERIMENT=======
    # config
    conf = Config(method_name=method_name,
                  generations=generations,
                  pop_size=pop_size,
                  clip_min=clip_min,
                  clip_max=clip_max,
                  a=a,
                  b=b,
                  scale=scale,
                  p=p,
                  std=std,
                  gamma=gamma,
                  CR=CR,
                  best=best,
                  dist_name=dist_name,
                  indices=indices,
                  patience=patience)

    pickle.dump(
        conf.config,
        open(dir_model + 'results' + slash + exp_name + 'config.pkl', "wb"))

    # Init method
    if method_name in ['DE']:
        method = DE(conf.config)
    elif method_name in ['RevDE']:
        method = RevDE(conf.config)
    elif method_name in ['ES']:
        method = ES(conf.config)
    elif method_name in ['EDA']:
        method = EDA(conf.config)
    elif method_name in ['RevDEknn']:
        method = RevDEknn(conf.config)
    elif method_name in ['EDAknn']:
        method = RevDEknn(conf.config)
    else:
        raise ValueError('Wrong method! Only DE, ABC_DE and ABC_MH.')

    # Init parameters
    theta = np.random.uniform(low=low,
                              high=high,
                              size=(conf.config['pop_size'], len(params)))
    theta = np.clip(theta,
                    a_min=conf.config['clip_min'],
                    a_max=conf.config['clip_max'])
    # Calcute their energy
    E = calculate_fitness(x_obs,
                          theta,
                          mod,
                          params,
                          dist=method.dist,
                          conf=conf.config)

    # Start experiment
    best_E = [np.min(E)]

    all_E = E
    all_theta = theta

    clock_start = time.time()
    print('START ~~~~~~>')
    g = conf.config['generations']
    for i in range(conf.config['generations']):
        print(f'========> Generation {i+1}/{g}')
        theta, E = method.step(theta, E, x_obs, mod, params)
        if np.min(E) < best_E[-1]:
            best_E.append(np.min(E))
        else:
            best_E.append(best_E[-1])

        all_theta = np.concatenate((all_theta, theta), 0)
        all_E = np.concatenate((all_E, E), 0)
        # SAVING
        np.save(dir_model + 'results' + slash + exp_name + 'all_theta.npy',
                all_theta)
        np.save(dir_model + 'results' + slash + exp_name + 'all_E.npy', all_E)
        np.save(dir_model + 'results' + slash + exp_name + 'best_E.npy',
                np.asarray(best_E))

        # early stopping
        if i > patience:
            if best_E[-patience] == best_E[-1]:
                break
    print('~~~~~~> END')
    clock_stop = time.time()
    print('Time elapsed: {}'.format(clock_stop - clock_start))
    np.save(dir_model + 'results' + slash + exp_name + 'time.npy',
            np.asarray(clock_stop - clock_start))