def forward(x, t): y = conv1(x) y = autograd.relu(y) y1 = conv21(y) y2 = conv22(y) y = autograd.cat((y1, y2), 1) y = autograd.relu(y) y = autograd.flatten(y) y = linear(y) loss = autograd.softmax_cross_entropy(y, t) return loss, y
def forward(x, t): y = conv1(x) y = autograd.relu(y) y = bn1(y) y = pooling1(y) y1 = conv21(y) y2 = conv22(y) y = autograd.cat((y1, y2), 1) y = bn2(y) y = autograd.relu(y) y = bn2(y) y = pooling2(y) y = autograd.flatten(y) y = linear(y) loss = autograd.softmax_cross_entropy(y, t) return loss, y
def forward(x, t): y = conv1(x) y = autograd.tanh(y) y1 = conv21(y) y2 = conv22(y) y = autograd.cat((y1, y2), 1) y = autograd.sigmoid(y) y = bn(y) y = autograd.relu(y) y = autograd.mul(y, y) y = pooling1(y) y = autograd.sigmoid(y) y = pooling2(y) print(tensor.to_numpy(y).shape) y = autograd.flatten(y) y = linear(y) print(tensor.to_numpy(y).shape) loss = autograd.softmax_cross_entropy(y, t) return loss, y
def run(model, modeldic, layer,inputs): ''' input: input for singa model load other nodes of onnx ''' supportLayer = ['Linear','Conv','MaxPool','AveragePool','BatchNormalization'] #supportLayer = ['Conv', 'MaxPool', 'AveragePool', 'BatchNormalization'] oper=modeldic for counter,i in enumerate(model.graph.input): oper[i.name] = inputs[counter] for i in model.graph.node: if (i.op_type == 'Relu'): oper[str(i.output[0])] = autograd.relu(oper[str(i.input[0])]) elif (i.op_type == 'Softmax'): oper[str(i.output[0])] = autograd.softmax(oper[str(i.input[0])]) elif (i.op_type == 'Add'): oper[str(i.output[0])] = autograd.add(oper[str(i.input[0])], oper[str(i.input[1])]) elif (i.op_type == 'MatMul'): oper[str(i.output[0])] = autograd.matmul(oper[str(i.input[0])], oper[str(i.input[1])]) elif (i.op_type == 'Flatten'): oper[str(i.output[0])] = autograd.flatten(oper[str(i.input[0])]) elif(i.op_type == 'Concat'): oper[str(i.output[0])] = autograd.cat((oper[str(i.input[0])], oper[str(i.input[1])]),int(i.attribute[0].i)) elif(i.op_type == 'Tanh'): oper[str(i.output[0])] = autograd.tanh(oper[str(i.input[0])]) elif (i.op_type == 'Sigmoid'): oper[str(i.output[0])] = autograd.sigmoid(oper[str(i.input[0])]) elif (i.op_type == 'Mul'): oper[str(i.output[0])] = autograd.mul(oper[str(i.input[0])],oper[str(i.input[1])]) elif (i.op_type in supportLayer): oper[str(i.output[0])] = layer[str(i.output[0])](oper[str(i.input[0])]) out =[] for counter,i in enumerate(model.graph.output): out.append(modeldic[i.name]) return out
def forward(self, inputs): x, self.hx, self.cx = self.rnn(inputs, (self.hx, self.cx)) x = autograd.cat(x) x = autograd.reshape(x, (-1, self.hidden_size)) return self.dense(x)