コード例 #1
0
ファイル: cnn.py プロジェクト: joddiy/singa-onnx
 def forward(x, t):
     y = conv1(x)
     y = autograd.tanh(y)
     y1 = conv21(y)
     y2 = conv22(y)
     y = autograd.cat((y1, y2), 1)
     y = autograd.sigmoid(y)
     y = autograd.mul(y, y)
     y = autograd.flatten(y)
     y = linear(y)
     loss = autograd.softmax_cross_entropy(y, t)
     return loss, y
コード例 #2
0
    def test_Tanh_gpu(self):
        X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
                      0.5]).reshape(3, 2).astype(np.float32)
        XT = np.tanh(X)
        x = tensor.from_numpy(X)
        x.to_device(gpu_dev)

        result = autograd.tanh(x)
        dx = result.creator.backward(x.data)

        np.testing.assert_array_almost_equal(tensor.to_numpy(result),
                                             XT,
                                             decimal=5)
        self.check_shape(dx.shape(), (3, 2))
コード例 #3
0
    def forward(x, t):
        y = conv1(x)
        y = autograd.tanh(y)
        y1 = conv21(y)
        y2 = conv22(y)
        y = autograd.cat((y1, y2), 1)
        y = autograd.sigmoid(y)
        y = bn(y)
        y = autograd.relu(y)
        y = autograd.mul(y, y)
        y = pooling1(y)
        y = autograd.sigmoid(y)

        y = pooling2(y)

        print(tensor.to_numpy(y).shape)
        y = autograd.flatten(y)
        y = linear(y)
        print(tensor.to_numpy(y).shape)
        loss = autograd.softmax_cross_entropy(y, t)
        return loss, y
コード例 #4
0
ファイル: sonnx.py プロジェクト: joddiy/singa-onnx
    def run(model, modeldic, layer,inputs):
        '''
            input: input for singa model
            load other nodes of onnx
            '''
        supportLayer = ['Linear','Conv','MaxPool','AveragePool','BatchNormalization']
        #supportLayer = ['Conv', 'MaxPool', 'AveragePool', 'BatchNormalization']
        oper=modeldic

        for counter,i in enumerate(model.graph.input):
            oper[i.name] = inputs[counter]
        for i in model.graph.node:
            if (i.op_type == 'Relu'):
                oper[str(i.output[0])] = autograd.relu(oper[str(i.input[0])])
            elif (i.op_type == 'Softmax'):
                oper[str(i.output[0])] = autograd.softmax(oper[str(i.input[0])])
            elif (i.op_type == 'Add'):
                oper[str(i.output[0])] = autograd.add(oper[str(i.input[0])], oper[str(i.input[1])])
            elif (i.op_type == 'MatMul'):
                oper[str(i.output[0])] = autograd.matmul(oper[str(i.input[0])], oper[str(i.input[1])])
            elif (i.op_type == 'Flatten'):
                oper[str(i.output[0])] = autograd.flatten(oper[str(i.input[0])])
            elif(i.op_type == 'Concat'):
                oper[str(i.output[0])] = autograd.cat((oper[str(i.input[0])], oper[str(i.input[1])]),int(i.attribute[0].i))
            elif(i.op_type == 'Tanh'):
                oper[str(i.output[0])] = autograd.tanh(oper[str(i.input[0])])
            elif (i.op_type == 'Sigmoid'):
                oper[str(i.output[0])] = autograd.sigmoid(oper[str(i.input[0])])
            elif (i.op_type == 'Mul'):
                oper[str(i.output[0])] = autograd.mul(oper[str(i.input[0])],oper[str(i.input[1])])
            elif (i.op_type in supportLayer):
                oper[str(i.output[0])] = layer[str(i.output[0])](oper[str(i.input[0])])
        out =[]
        for counter,i in enumerate(model.graph.output):
            out.append(modeldic[i.name])
        return out