def forward(x, t): y = conv1(x) y = autograd.tanh(y) y1 = conv21(y) y2 = conv22(y) y = autograd.cat((y1, y2), 1) y = autograd.sigmoid(y) y = autograd.mul(y, y) y = autograd.flatten(y) y = linear(y) loss = autograd.softmax_cross_entropy(y, t) return loss, y
def test_Tanh_gpu(self): X = np.array([0.8, -1.2, 3.3, -3.6, -0.5, 0.5]).reshape(3, 2).astype(np.float32) XT = np.tanh(X) x = tensor.from_numpy(X) x.to_device(gpu_dev) result = autograd.tanh(x) dx = result.creator.backward(x.data) np.testing.assert_array_almost_equal(tensor.to_numpy(result), XT, decimal=5) self.check_shape(dx.shape(), (3, 2))
def forward(x, t): y = conv1(x) y = autograd.tanh(y) y1 = conv21(y) y2 = conv22(y) y = autograd.cat((y1, y2), 1) y = autograd.sigmoid(y) y = bn(y) y = autograd.relu(y) y = autograd.mul(y, y) y = pooling1(y) y = autograd.sigmoid(y) y = pooling2(y) print(tensor.to_numpy(y).shape) y = autograd.flatten(y) y = linear(y) print(tensor.to_numpy(y).shape) loss = autograd.softmax_cross_entropy(y, t) return loss, y
def run(model, modeldic, layer,inputs): ''' input: input for singa model load other nodes of onnx ''' supportLayer = ['Linear','Conv','MaxPool','AveragePool','BatchNormalization'] #supportLayer = ['Conv', 'MaxPool', 'AveragePool', 'BatchNormalization'] oper=modeldic for counter,i in enumerate(model.graph.input): oper[i.name] = inputs[counter] for i in model.graph.node: if (i.op_type == 'Relu'): oper[str(i.output[0])] = autograd.relu(oper[str(i.input[0])]) elif (i.op_type == 'Softmax'): oper[str(i.output[0])] = autograd.softmax(oper[str(i.input[0])]) elif (i.op_type == 'Add'): oper[str(i.output[0])] = autograd.add(oper[str(i.input[0])], oper[str(i.input[1])]) elif (i.op_type == 'MatMul'): oper[str(i.output[0])] = autograd.matmul(oper[str(i.input[0])], oper[str(i.input[1])]) elif (i.op_type == 'Flatten'): oper[str(i.output[0])] = autograd.flatten(oper[str(i.input[0])]) elif(i.op_type == 'Concat'): oper[str(i.output[0])] = autograd.cat((oper[str(i.input[0])], oper[str(i.input[1])]),int(i.attribute[0].i)) elif(i.op_type == 'Tanh'): oper[str(i.output[0])] = autograd.tanh(oper[str(i.input[0])]) elif (i.op_type == 'Sigmoid'): oper[str(i.output[0])] = autograd.sigmoid(oper[str(i.input[0])]) elif (i.op_type == 'Mul'): oper[str(i.output[0])] = autograd.mul(oper[str(i.input[0])],oper[str(i.input[1])]) elif (i.op_type in supportLayer): oper[str(i.output[0])] = layer[str(i.output[0])](oper[str(i.input[0])]) out =[] for counter,i in enumerate(model.graph.output): out.append(modeldic[i.name]) return out