コード例 #1
0
    def run(self, X0, f0, A, maxiter=100, tol=1e-8):
        """
        Keyword Arguments:
        X0      -- intial guess PW
        f0      -- initial guess occupancy
        A       -- free energy
        maxiter -- (default 100)
        tol     -- (default 1e-8)
        """
        E = A(X0, f0)
        logger('entry E=', E)
        # X, fn, sel = trim(X0, f0, tol=1e-12)
        X, fn = deepcopy(X0), deepcopy(f0)
        Et = A(X, fn)
        assert (np.isclose(Et, E))
        dAdC, dAdf = A.grad(X, fn)

        Y = stiefel_project_tangent(-dAdC, X)

        for i in range(maxiter):
            X, Y, dAdC, fn, dAdf = self.cg_step(X, fn, dAdC, dAdf, Y)
            # logger('occupation numbers:', fn)
            # check for convergence
            res = np.real(inner(Y, dAdC))
            resf = np.real(inner(dAdf, dAdf))
            logger('iteration %03d, res %.5g f: %.5g' % (i, res, resf))
        return X, fn
コード例 #2
0
def quadratic_approximation(free_energy, dAdC, dAdf, Y, y, X, fn, te, se, comm,
                            kweights, mag):
    """
    Keyword Arguments:
    dAdC -- ∇ₓ A
    dAdf -- ∇f A
    Y    -- search direction X
    y    -- search direction f  (admissible)
    X    -- pw coefficients
    f    -- band occupancies
    te   -- interpolation offset X
    se   -- interpolation offset f

    Returns:
    coefficients of the 2d interpolating polynomial
    """

    # p(t,s) = c[0] t^2 + c[1] s^2 + c[2] t + c[3] s + c[4]

    import numpy as np
    from sirius.baarman import constrain_occupancy_gradient
    logger('\tquadratic approximation: te=%.4g, se=%.4g' % (te, se))

    U, _ = stiefel_transport_operators(Y, X, tau=te)
    at_trial_step = False

    coeffs = np.zeros(5)
    if se < 1e-10:
        # coeffs[4] = free_energy(X, fn)
        Asys = np.zeros((3, 3))
        rsys = np.zeros(3)

        Xnew = U @ X
        ynew = fn + se * y

        Asys[0, 1] = 1
        rsys[0] = 2 * np.real(inner(dAdC, Y))
        logger('slope:', rsys[0])
        Asys[1, [0, 1, 2]] = [te**2, te, 1]
        rsys[1] = free_energy(Xnew, ynew)
        Asys[2, 2] = 1
        eint1 = free_energy(X, fn)
        rsys[2] = eint1
        lcoeffs = np.linalg.solve(Asys, rsys)
        coeffs[[0, 2, 4]] = lcoeffs
    else:
        Asys = np.zeros((5, 5))
        rsys = np.zeros(5)
        # 1-th line: dτ p(0,0)
        Asys[1, 2] = 1
        rsys[1] = 2 * np.real(inner(dAdC, Y))
        if rsys[1] >= 0:
            raise GradientXError("in quadratic_approximation")
        # 2-nd line: dσ p(0,0)
        Asys[2, 3] = 1
        rsys[2] = np.real(inner(dAdf, y))
        # assert rsys[2] < 1e-7
        # 3-rd line: dτ p(te, se)
        # goto target point: U(te)X, fn+se*y
        Xnew = U @ X
        ynew = fn + se * y
        eint1 = free_energy(Xnew, ynew)
        # logger('\tfree energy at interpolation point: ', eint1)
        dAdCnew, dAdfnew = free_energy.grad(Xnew, ynew)
        ynew = constrain_occupancy_gradient(dAdfnew, ynew, comm, kweights, mag)
        Asys[3, [0, 2]] = [2 * te, 1]
        rsys[3] = np.real(inner(dAdCnew, Y))
        # 4-th line: dσ p(te, se)
        Asys[4, [1, 3]] = [2 * se, 1]
        rsys[4] = np.real(inner(dAdfnew, y))
        # 0-th line: p(0,0)
        # last: make sure that after return we are at X, fn
        if at_trial_step:
            Asys[0, :] = [te**2, se**2, te, se, 1]
            rsys[0] = eint1
            # reset state
            free_energy(X, fn)
        else:
            Asys[0, 4] = 1
            rsys[0] = free_energy(X, fn)
        coeffs = np.linalg.solve(Asys, rsys)
        # eint1_extrap = eval_quadratic_approx(coeffs, te, se)
        # logger('\tqapprox eint1: ', eint1)
        # logger('\tqapprox eint1_extrap: ', eint1_extrap)

    return coeffs, eint1
コード例 #3
0
    def cg_step(self, X, f, dAdC, dAdf, Y):
        """
        Keyword Arguments:
        X       -- current planewave coefficients
        f       -- next planewave coefficients
        Y       -- search direction
        sigma_k -- previous step length
        tau_k   -- previous step length
        """
        from sirius.baarman import constrain_occupancy_gradient
        from sirius.baarman import stiefel_transport_operators
        from sirius.baarman import occupancy_admissible_ds

        # current_energy = A(X, f)
        y = constrain_occupancy_gradient(dAdf, f, self.comm, self.kweights,
                                         self.mag)
        logger('\t||y||:', inner(y, y))
        sigma_max = occupancy_admissible_ds(y, f, self.mag)
        # logger('y:', y)

        # TODO: determine te, se
        te = max(self.min_tau, 0.1 * self.tau_l)
        se = min(sigma_max, 0.1 * max(self.min_sigma, self.sigma_l))
        # se = 0.1 * sigma_max
        logger('\tte=%.4g, se=%.4g' % (te, se))
        try:
            coeffs, Etrial = quadratic_approximation(self.A,
                                                     dAdC,
                                                     dAdf,
                                                     Y,
                                                     y,
                                                     X=X,
                                                     fn=f,
                                                     te=te,
                                                     se=se,
                                                     comm=self.comm,
                                                     kweights=self.kweights,
                                                     mag=self.mag)
        except GradientXError:
            logger('!!!CG RESTART!!!')
            Y = -stiefel_project_tangent(dAdC, X)
            coeffs, Etrial = quadratic_approximation(self.A,
                                                     dAdC,
                                                     dAdf,
                                                     Y,
                                                     y,
                                                     X=X,
                                                     fn=f,
                                                     te=te,
                                                     se=se,
                                                     comm=self.comm,
                                                     kweights=self.kweights,
                                                     mag=self.mag)

        if np.abs(coeffs[1]) < 1e-9:
            sigma_min = 0
        else:
            sigma_min = -coeffs[3] / (2 * coeffs[1])

        tau_min = -coeffs[2] / (2 * coeffs[0])

        if sigma_min < 0:
            sigma_min = sigma_max
            logger('\tOCCUPATION APPROX FAILED! taking sigma_max')
            save_state(self.A.energy.kpointset, X, Y, f, y, tau_min, sigma_min)
        if sigma_min > sigma_max:
            logger(
                '\ttoo long step for occupation numbers, limit by max step, σ_min = %.5g, a= %.5g'
                % (sigma_min, coeffs[3]))
            sigma_min = sigma_max

        # store step lengths as estimate for next iteration
        self.tau_l = tau_min
        self.sigma_l = sigma_min

        U, W = stiefel_transport_operators(Y, X, tau=tau_min)
        # transport pw along geodesic
        Xnew = U @ X
        Yt = W @ Y
        assert np.isclose(inner(Yt, Yt), inner(Y, Y))
        # new occupation numbers
        ynew = f + sigma_min * y

        logger('\tstep f: ', sigma_min**2 * inner(y, y))

        E = self.A(Xnew, ynew)

        try:
            self.E = E
        except ValueError:
            Ex = self.A(X, ynew)
            logger('te: ', te)
            logger('se: ', se)
            logger('tau_min:', tau_min)
            logger('sigma_min:', sigma_min)
            if Etrial < self.E:
                E = Etrial
                logger('APPROX FAILED, go to trial point')
                U, W = stiefel_transport_operators(Y, X, tau=te)
                # transport pw along geodesic
                Xnew = U @ X
                Yt = W @ Y
                # parallel transport gradient along geodesic
                # new occupation numbers
                ynew = f + se * y
                self.E = self.A(Xnew, ynew)
                assert (np.isclose(self.E, Etrial))
            else:
                try:
                    logger('attempt an optimization step in x only')
                    # attempt to optimize only X
                    self.A(X, f)
                    coeffs, Etrial = quadratic_approximation(
                        self.A,
                        dAdC,
                        dAdf,
                        Y,
                        y,
                        X=X,
                        fn=f,
                        te=te,
                        se=0,
                        comm=self.comm,
                        kweights=self.kweights,
                        mag=self.mag)
                    assert coeffs[0] > 0 and coeffs[2] < 0
                    tau_min = -coeffs[2] / (2 * coeffs[0])
                    U, W = stiefel_transport_operators(Y, X, tau=tau_min)
                    # transport pw along geodesic
                    Xnew = U @ X
                    Yt = W @ Y
                    ynew = f
                    E = self.A(Xnew, ynew)
                    # attempt to update
                    self.E = E
                except:
                    save_state(self.A.energy.kpointset, X, Y, f, y, tau_min,
                               sigma_min)
                    raise Exception('giving up')

        F = stiefel_project_tangent(dAdC, X)
        WF = W @ F
        # trim..
        # Xout, fnout, sel = trim(Xnew, ynew)
        # assert np.isclose(E, self.A(Xout, fnout))
        # compute new gradients
        # self.A(Xnew, ynew)
        dAdC, dAdf = self.A.grad(Xnew, ynew)
        # project to Stiefel manifold
        Fnext = stiefel_project_tangent(dAdC, Xnew)
        # determine next direction
        gamma = self.polak_ribiere(Fnext, WF, F)

        Ynew = -Fnext + gamma * Yt

        return Xnew, Ynew, dAdC, ynew, dAdf
コード例 #4
0
    def polak_ribiere(Fnext, WF, F):
        from sirius import inner
        import numpy as np

        return np.real(inner(Fnext - WF, Fnext)) / np.real(inner(F, F))