コード例 #1
0
def get_mask_files(det_name):
    """
    Get the mask files from previous jobs for the specified sensor.

    Parameters
    ----------
    det_name: str
        The detector name in the focal plane, e.g., 'R22_S11'.

    Returns
    -------
    list of mask file paths.
    """
    badpixel_run = siteUtils.get_analysis_run('badpixel')
    bias_run = siteUtils.get_analysis_run('bias')

    if badpixel_run is not None or bias_run is not None:
        with open('hj_fp_server.pkl', 'rb') as fd:
            hj_fp_server = pickle.load(fd)

    if badpixel_run is not None:
        mask_files = hj_fp_server.get_files('pixel_defects_BOT',
                                            f'{det_name}*mask*.fits',
                                            run=badpixel_run)
        mask_files = siteUtils.get_scratch_files(mask_files)
        print(f"Mask files from run {badpixel_run} and {det_name}:")
        for item in mask_files:
            print(item)
        print()
    else:
        mask_files = siteUtils.dependency_glob(f'*{det_name}*mask*.fits',
                                               jobname='pixel_defects_BOT',
                                               description='pixel defects masks')
    if bias_run is not None:
        rolloff_mask_files = hj_fp_server.get_files('bias_frame_BOT',
                                                    f'{det_name}_*mask*.fits',
                                                    run=bias_run)
        rolloff_mask_files = siteUtils.get_scratch_files(rolloff_mask_files)
        print(f"Edge rolloff mask file from run {bias_run} and {det_name}:")
        for item in rolloff_mask_files:
            print(item)
        print()
    else:
        rolloff_mask_files = siteUtils.dependency_glob(f'*{det_name}*mask*.fits',
                                                       description='rolloff masks',
                                                       jobname='bias_frame_BOT')
    mask_files.extend(rolloff_mask_files)

    return mask_files
コード例 #2
0
def write_hj_server_file(hj_fp_server_file='hj_fp_server.pkl'):
    """
    If harnessed job filepath server file is missing, query the
    eT db and create it.
    """
    if not os.path.isfile(hj_fp_server_file):
        hj_fp_server = siteUtils.HarnessedJobFilePaths()
        for analysis_type in ('badpixel', 'bias', 'dark', 'linearity',
                              'nonlinearity'):
            hj_fp_server.query_file_paths(
                siteUtils.get_analysis_run(analysis_type))
        with open(hj_fp_server_file, 'wb') as output:
            pickle.dump(hj_fp_server, output)
コード例 #3
0
def bias_frame_jh_task(det_name):
    """JH version of the bias_frame_task."""
    import os
    import siteUtils
    import json
    from bot_eo_analyses import glob_pattern, bias_frame_task, \
        bias_stability_task, pca_corrected_superbias

    run = siteUtils.getRunNumber()
    acq_jobname = siteUtils.getProcessName('BOT_acq')
    bias_files \
        = siteUtils.dependency_glob(glob_pattern('bias_frame', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Bias frames:')
    # Skip the first 5 bias files to avoid transient features in the
    # imaging array from after just starting the run.
    bias_files = sorted(bias_files, key=os.path.basename)[5:]
    if not bias_files:
        print("bias_frame_task: Needed data files are missing for detector",
              det_name)
        return None

    bias_stability_files \
        = siteUtils.dependency_glob(glob_pattern('bias_stability', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Bias stability frames:')
    if not bias_stability_files:
        print("bias_stability_task: Needed data files are missing for detector",
              det_name)
        return None

    superbias_file, bias_model_components \
        = bias_frame_task(run, det_name, bias_files)
    bias_stability_files = sorted(bias_stability_files)

    if not os.environ.get('LCATR_USE_PCA_BIAS_FIT', "True") == 'True':
        bias_model_components = None
    if siteUtils.get_analysis_run('bias') == 'rowcol':
        bias_model_components = 'rowcol', superbias_file
    print("bias_model_components:", bias_model_components)
    bias_stability_task(run, det_name, bias_stability_files,
                        bias_model_components=bias_model_components)

    if (bias_model_components is not None and
        bias_model_components[0] != 'rowcol'):
        pca_corrected_superbias(run, det_name, bias_files,
                                bias_model_components)

    return superbias_file
コード例 #4
0
def bias_filename(run, det_name):
    """
    The bias frame file derived from stacked bias files.
    """
    bias_run = siteUtils.get_analysis_run('bias')
    if bias_run is None:
        filename = make_bias_filename(run, det_name)
        if not os.path.isfile(filename):
            # Look for bias file from prerequisite job.
            return siteUtils.dependency_glob(filename,
                                             description='Bias frames:')[0]
    else:
        # Retrieve bias file from previous run.
        with open('hj_fp_server.pkl', 'rb') as fd:
            hj_fp_server = pickle.load(fd)
        filename = hj_fp_server.get_files('bias_frame_BOT',
                                          f'*{det_name}*median_bias.fits',
                                          run=bias_run)[0]
        filename = siteUtils.get_scratch_files([filename])[0]
    print("Bias frame:")
    print(filename)
    return filename
コード例 #5
0
def medianed_dark_frame(det_name):
    """
    The medianed dark frame from the pixel defects task.
    """
    pattern = f'{det_name}*_median_dark_bp.fits'
    dark_run = siteUtils.get_analysis_run('dark')
    if dark_run is None:
        return siteUtils.dependency_glob(pattern, description='Dark frame:')[0]

    # Retrieve bias file from previous run.
    with open('hj_fp_server.pkl', 'rb') as fd:
        hj_fp_server = pickle.load(fd)
    try:
        filename = hj_fp_server.get_files('pixel_defects_BOT', pattern,
                                          run=dark_run)[0]
    except KeyError:
        pattern = f'{det_name}_*_median_dark_current.fits'
        filename = hj_fp_server.get_files('dark_current_BOT', pattern,
                                          run=dark_run)[0]
    filename = siteUtils.get_scratch_files([filename])[0]
    print("Dark frame:")
    print(filename)
    return filename
コード例 #6
0
def run_jh_tasks(*jh_tasks, device_names=None, processes=None, walltime=3600):
    """
    Run functions to execute tasks under the job harness in parallel.
    These functions should take a device name as its only argument, and
    the parallelization will take place over device_names.

    Parameters
    ----------
    jh_tasks: list-like container of functions
        These functions are serialized and dispatched to workers on
        remote nodes, so all dependencies should be imported in the
        bodies of the functions.
    device_names: list-like container of device names [None]
        List of sensors or rafts on which to operate.  If None, then
        the installed sensors in the focal plane is used.
    processes: int [None]
        Number of processes to run in parallel. If None, then all
        available processes can be potentially used.
    walltime: float [3600]
        Walltime in seconds for python app execution.  If the python app
        does not return within walltime, a parsl.app.errors.AppTimeout
        exception will be thrown.

    Raises
    ------
    parsl.app.errors.AppTimeout

    Notes
    -----
    Because the number of jh_task functions can vary, the keyword arguments
    should reference the keywords explicitly, i.e., one cannot rely on
    keyword position to pass those values.
    """
    if device_names is None:
        device_names = camera_info.get_det_names()

    # Restrict to installed rafts or sensors.  This function call
    # also writes the camera_info cache file for the eT db query.
    installed_rafts = camera_info.get_installed_raft_names()

    # Check if rafts are over-ridden in the lcatr.cfg file.
    override_rafts = os.environ.get('LCATR_RAFTS', None)
    if override_rafts is not None:
        installed_rafts = override_rafts.split('_')

    device_names = [_ for _ in device_names if _[:3] in installed_rafts]

    cwd = os.path.abspath('.')

    # Query eT database for file paths from a previous run, if
    # specified, and store in a pickle file.
    hj_fp_server = siteUtils.HarnessedJobFilePaths()

    # Query for file paths for other analysis runs, if specified in
    # the bot_eo_config_file.
    for analysis_type in ('badpixel', 'bias', 'dark', 'linearity',
                          'nonlinearity'):
        hj_fp_server.query_file_paths(
            siteUtils.get_analysis_run(analysis_type))

    hj_fp_server_file = 'hj_fp_server.pkl'
    with open(hj_fp_server_file, 'wb') as output:
        pickle.dump(hj_fp_server, output)

    # Create a GetAmplifierGains object in order to query the eT
    # database for gain results from previous runs and write a pickle
    # file that can be loaded locally from disk by the various jh
    # tasks being run in parallel to avoid eT db access contention.
    GetAmplifierGains()

    for jh_task in jh_tasks:
        # Add 30 second sleep before launching jh_task processes in
        # parallel to allow for parsl process_pool_workers from the
        # previous set of jh_task processes to finish.
        time.sleep(30)
        run_device_analysis_pool(jh_task, device_names,
                                 processes=processes, cwd=cwd,
                                 walltime=walltime)
コード例 #7
0
def raft_results_task(raft_name):
    """Task to aggregate data for raft-level plots and results."""
    import os
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import lsst.eotest.sensor as sensorTest
    import lsst.eotest.raft as raftTest
    import siteUtils
    from camera_components import camera_info
    from bot_eo_analyses import get_raft_files_by_slot, make_file_prefix,\
        get_amplifier_gains, get_analysis_types, make_title

    def plt_savefig(filename):
        plt.savefig(filename)
        plt.close()

    # Get results files for each CCD in the raft.
    try:
        results_files \
            = get_raft_files_by_slot(raft_name, 'eotest_results.fits')
        print("results_files:", results_files)
    except FileNotFoundError:
        print("No raft-level results for", raft_name)
        return

    # Determine the total number of pixels and number of edge rolloff
    # pixels for the types of CCDs in this raft and update the results
    # files.  This info will be used in computing the pixel defect
    # compliance.  Use one of the median bias files for this since they
    # should be available no matter which analysis tasks are run.
    bias_frames = get_raft_files_by_slot(raft_name,
                                         'median_bias.fits',
                                         jobname='bias_frame_BOT')
    try:
        mask_files = get_raft_files_by_slot(raft_name,
                                            'edge_rolloff_mask.fits')
    except FileNotFoundError:
        input_mask = None
    else:
        input_mask = list(mask_files.values())[0]
    total_num, rolloff_mask \
        = sensorTest.pixel_counts(list(bias_frames.values())[0],
                                  input_mask=input_mask)

    # Exposure time (in seconds) for 95th percentile dark current shot
    # noise calculation.
    exptime = 15.

    # Update the eotest results files.
    analysis_types = get_analysis_types()
    for filename in results_files.values():
        eotest_results = sensorTest.EOTestResults(filename)
        eotest_results.add_ccd_result('TOTAL_NUM_PIXELS', total_num)
        eotest_results.add_ccd_result('ROLLOFF_MASK_PIXELS', rolloff_mask)
        shot_noise = eotest_results['DARK_CURRENT_95'] * exptime
        total_noise = np.sqrt(eotest_results['READ_NOISE']**2 + shot_noise)
        add_max_frac_dev = ('MAX_FRAC_DEV' not in eotest_results.colnames
                            and 'linearity' in analysis_types)
        for i, amp in enumerate(eotest_results['AMP']):
            if add_max_frac_dev:
                eotest_results.add_seg_result(amp, 'MAX_FRAC_DEV', 0.)
            eotest_results.add_seg_result(amp, 'DC95_SHOT_NOISE',
                                          np.float(shot_noise[i]))
            try:
                eotest_results['TOTAL_NOISE'][i] = total_noise[i]
            except KeyError:
                eotest_results.add_seg_result(amp, 'TOTAL_NOISE',
                                              np.float(total_noise[i]))
        eotest_results.write(filename)

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, raft_name)
    title = make_title(run, raft_name)

    gains = {
        slot_name: get_amplifier_gains(results_files[slot_name])
        for slot_name in results_files
    }

    # Update the gains in the results files with the retrieved values.
    for slot_name, ccd_gains in gains.items():
        try:
            results = sensorTest.EOTestResults(results_files[slot_name])
        except KeyError:
            continue
        else:
            for amp, gain in ccd_gains.items():
                results.add_seg_result(amp, 'GAIN', gain)
            results.write()

    # Extract dark currents for each amplifier in the raft.
    dark_currents = dict()
    for slot_name, results_file in results_files.items():
        results = sensorTest.EOTestResults(results_file)
        try:
            dark_currents[slot_name] \
                = dict(_ for _ in zip(results['AMP'],
                                      results['DARK_CURRENT_MEDIAN']))
        except KeyError:
            dark_currents[slot_name] = dict({amp: 0 for amp in range(1, 17)})

    png_files = []
    # Median bias mosaic
    median_bias = raftTest.make_raft_mosaic(bias_frames, bias_subtract=False)
    median_bias.plot(title=f'{title}, median bias frames',
                     annotation='ADU/pixel',
                     rotate=180)
    png_files.append('{}_median_bias.png'.format(file_prefix))
    plt_savefig(png_files[-1])
    del median_bias

    # Check if parallel+serial overscan bias correction should be applied.
    bias_run = siteUtils.get_analysis_run('bias')
    if bias_run is not None and bias_run.lower() == 'rowcol':
        for key in bias_frames:
            bias_frames[key] = ('rowcol', bias_frames[key])

    # Dark mosaic
    dark_files = None
    try:
        dark_files = get_raft_files_by_slot(raft_name, 'median_dark_bp.fits')
    except FileNotFoundError:
        try:
            dark_files = get_raft_files_by_slot(raft_name,
                                                'median_dark_current.fits')
        except FileNotFoundError as eobj:
            print(eobj)
    if dark_files is not None:
        dark_mosaic = raftTest.make_raft_mosaic(dark_files,
                                                gains=gains,
                                                bias_frames=bias_frames)
        dark_mosaic.plot(
            title=f'{title}, medianed dark frames',
            annotation='e-/pixel, gain-corrected, bias-subtracted',
            rotate=180)
        png_files.append('{}_medianed_dark.png'.format(file_prefix))
        plt_savefig(png_files[-1])
        del dark_mosaic

    # High flux superflat mosaic.
    try:
        sflat_high_files \
            = get_raft_files_by_slot(raft_name, 'superflat_high.fits')
    except FileNotFoundError as eobj:
        print(eobj)
    else:
        sflat_high = raftTest.make_raft_mosaic(sflat_high_files,
                                               gains=gains,
                                               bias_frames=bias_frames,
                                               dark_currents=dark_currents)
        sflat_high.plot(title=f'{title}, high flux superflat',
                        annotation='e-/pixel, gain-corrected, bias-subtracted',
                        rotate=180)
        png_files.append('{}_superflat_high.png'.format(file_prefix))
        plt_savefig(png_files[-1])
        del sflat_high

    # Low flux superflat mosaic.
    try:
        sflat_low_files \
            = get_raft_files_by_slot(raft_name, 'superflat_low.fits')
    except FileNotFoundError as eobj:
        print(eobj)
    else:
        sflat_low = raftTest.make_raft_mosaic(sflat_low_files,
                                              gains=gains,
                                              bias_frames=bias_frames,
                                              dark_currents=dark_currents)
        sflat_low.plot(title=f'{title}, low flux superflat',
                       annotation='e-/pixel, gain-corrected, bias-subtracted',
                       rotate=180)
        png_files.append('{}_superflat_low.png'.format(file_prefix))
        plt_savefig(png_files[-1])
        del sflat_low

    # QE images at various wavelengths and filters
    acq_jobname = siteUtils.getProcessName('BOT_acq')
    for wl in ('SDSSu', 'SDSSg', 'SDSSr', 'SDSSi', 'SDSSz', 'SDSSY', '480nm',
               '650nm', '750nm', '870nm', '950nm', '970nm'):
        print("Processing %s image" % wl)
        pattern = 'lambda_flat_{}*/*_{}_*.fits'.format(wl, raft_name)
        print(pattern)
        print(acq_jobname)
        files = siteUtils.dependency_glob(pattern, acq_jobname=acq_jobname)
        if not files:
            print("no files found")
            continue
        lambda_files = dict()
        for item in files:
            slot_name = os.path.basename(item).split('_')[-1].split('.')[0]
            lambda_files[slot_name] = item
        flat = raftTest.make_raft_mosaic(lambda_files,
                                         gains=gains,
                                         bias_frames=bias_frames,
                                         dark_currents=dark_currents)
        flat.plot(title=f'{title}, {wl}',
                  annotation='e-/pixel, gain-corrected, bias-subtracted',
                  rotate=180)
        png_files.append('{}_{}_flat.png'.format(file_prefix, wl))
        plt_savefig(png_files[-1])
        del flat

    # TODO: QE summary plot

    # Plots of read noise, nonlinearity, serial and parallel CTI,
    # PSF size, and gains from Fe55 and PTC.
    spec_plots = raftTest.RaftSpecPlots(results_files)
    columns = 'READ_NOISE DC95_SHOT_NOISE TOTAL_NOISE'.split()
    try:
        spec_plots.make_multi_column_plot(columns,
                                          'noise per pixel (-e rms)',
                                          spec=9,
                                          title=title,
                                          ybounds=(-1, 100))
        png_files.append('%s_total_noise.png' % file_prefix)
        plt_savefig(png_files[-1])
    except KeyError:
        pass

    try:
        if 'linearity' in analysis_types:
            spec_plots.make_plot('MAX_FRAC_DEV',
                                 'non-linearity (max. fractional deviation)',
                                 spec=0.03,
                                 title=title,
                                 ybounds=(0, 0.1))
            png_files.append('%s_linearity.png' % file_prefix)
            plt_savefig(png_files[-1])
    except KeyError:
        pass

    try:
        spec_plots.make_multi_column_plot(
            ('CTI_LOW_SERIAL', 'CTI_HIGH_SERIAL'),
            'Serial CTI (ppm)',
            spec=(5e-6, 3e-5),
            title=title,
            yscaling=1e6,
            yerrors=True,
            colors='br',
            ybounds=(-1e-5, 6e-5))
        png_files.append('%s_serial_cti.png' % file_prefix)
        plt_savefig(png_files[-1])
    except KeyError:
        pass

    try:
        spec_plots.make_multi_column_plot(
            ('CTI_LOW_PARALLEL', 'CTI_HIGH_PARALLEL'),
            'Parallel CTI (ppm)',
            spec=3e-6,
            title=title,
            yscaling=1e6,
            yerrors=True,
            colors='br',
            ybounds=(-1e-5, 6e-5))
        png_files.append('%s_parallel_cti.png' % file_prefix)
        plt_savefig(png_files[-1])
    except KeyError:
        pass

    try:
        spec_plots.make_plot('PSF_SIGMA',
                             'PSF sigma (microns)',
                             spec=5.,
                             title=title,
                             ybounds=(0, 5.2))
        png_files.append('%s_psf_sigma.png' % file_prefix)
        plt_savefig(png_files[-1])
    except KeyError:
        # PSF_SIGMA not available so skip this plot
        pass

    try:
        spec_plots.make_multi_column_plot(('GAIN', 'PTC_GAIN'),
                                          'System Gain (e-/ADU)',
                                          yerrors=True,
                                          title=title,
                                          colors='br',
                                          ybounds=(0, 3))
        png_files.append('%s_system_gain.png' % file_prefix)
        plt_savefig(png_files[-1])
    except KeyError:
        # PTC_GAIN data not available so skip this plot.
        pass

    try:
        if 'dark' in analysis_types:
            spec_plots.make_plot('DARK_CURRENT_95',
                                 '95th percentile dark current (e-/pixel/s)',
                                 spec=0.2,
                                 title=title,
                                 ybounds=(-0.01, 1))
            png_files.append('%s_dark_current.png' % file_prefix)
            plt_savefig(png_files[-1])
    except KeyError:
        pass

    # Make bias frame stats time history plots for the current raft.
    pattern = f'{raft_name}_{run}_bias_frame_stats.pickle'
    try:
        stats_file = siteUtils.dependency_glob(pattern,
                                               jobname='bias_frame_BOT',
                                               use_hj_fp_server=False)[0]
    except IndexError:
        pass
    else:
        file_prefix = make_file_prefix(run, raft_name)
        df_raft = pd.read_pickle(stats_file)
        if raft_name in 'R00 R04 R40 R44':
            slots = 'SG0 SW1 SW0 SG1'.split()
        else:
            slots = 'S20 S21 S22 S10 S11 S12 S00 S01 S02'.split()
        t0 = int(np.min(df_raft['MJD']))

        # Bias stability plot of mean signal over whole amps vs time.
        fig = plt.figure(figsize=(12, 12))
        for i, slot in enumerate(slots, 1):
            fig.add_subplot(3, 3, i)
            df = df_raft.query(f'slot == "{slot}"')
            amps = sorted(list(set(df['amp'])))
            for amp in amps:
                my_df = df.query(f'amp == {amp}')
                plt.scatter(my_df['MJD'] - t0,
                            my_df['mean'],
                            s=2,
                            label=f'{amp}')
            xmin, xmax, _, _ = plt.axis()
            plt.xlim(xmin, 1.2 * (xmax - xmin) + xmin)
            plt.legend(fontsize='x-small')
            plt.xlabel(f'MJD - {t0}')
            plt.ylabel('mean signal (ADU)')
            plt.title(slot)
        plt.tight_layout(rect=(0, 0, 1, 0.95))
        plt.suptitle(f'{title}, bias stability, mean signal')
        png_file = f'{file_prefix}_bias_stability_mean.png'
        png_files.append(png_file)
        plt_savefig(png_file)

        # Bias stability plot of stdev of the signal over whole amps vs time.
        fig = plt.figure(figsize=(12, 12))
        for i, slot in enumerate(slots, 1):
            fig.add_subplot(3, 3, i)
            df = df_raft.query(f'slot == "{slot}"')
            amps = sorted(list(set(df['amp'])))
            for amp in amps:
                my_df = df.query(f'amp == {amp}')
                plt.scatter(my_df['MJD'] - t0,
                            my_df['stdev'],
                            s=2,
                            label=f'{amp}')
            xmin, xmax, _, _ = plt.axis()
            plt.xlim(xmin, 1.2 * (xmax - xmin) + xmin)
            plt.legend(fontsize='x-small')
            plt.xlabel(f'MJD - {t0}')
            plt.ylabel('stdev (ADU)')
            plt.title(slot)
        plt.tight_layout(rect=(0, 0, 1, 0.95))
        plt.suptitle(f'{title}, bias stability, stdev')
        png_file = f'{file_prefix}_bias_stability_stdev.png'
        png_files.append(png_file)
        plt_savefig(png_file)

        # Bias stability plot of the mean signal of the lower left corner
        # of the amp in a 200x200 pixel region.
        fig = plt.figure(figsize=(12, 12))
        for i, slot in enumerate(slots, 1):
            fig.add_subplot(3, 3, i)
            df = df_raft.query(f'slot == "{slot}"')
            amps = sorted(list(set(df['amp'])))
            for amp in amps:
                my_df = df.query(f'amp == {amp}')
                plt.scatter(my_df['MJD'] - t0,
                            my_df['llc_mean'],
                            s=2,
                            label=f'{amp}')
            xmin, xmax, _, _ = plt.axis()
            plt.xlim(xmin, 1.2 * (xmax - xmin) + xmin)
            plt.legend(fontsize='x-small')
            plt.xlabel(f'MJD - {t0}')
            plt.ylabel('mean (ADU)')
            plt.title(slot)
        plt.tight_layout(rect=(0, 0, 1, 0.95))
        plt.suptitle(f'{title}, bias stability, '
                     'parallel+serial overscan correction\n'
                     '200x200 pixel region covering the readout corner')
        png_file = f'{file_prefix}_bias_stability_llc_200x200.png'
        png_files.append(png_file)
        plt_savefig(png_file)

    png_file_list = '{}_raft_results_task_png_files.txt'.format(raft_name)
    with open(png_file_list, 'w') as output:
        for item in png_files:
            if os.path.isfile(item):
                output.write('{}\n'.format(item))

    return None