コード例 #1
0
ファイル: test_xcorr.py プロジェクト: iceseismic/sito
    def test_xcorr_acorrt(self):
        data1 = np.sin(np.arange(1001) * 2 * np.pi / 500.)
        cor1 = xcorrt(data1, data1, 1000)
        cor2 = acorrt(data1, 1000, oneside=False, clipdata=False)
#        from pylab import plot, show, subplot, legend
#        subplot(211)
#        plot(data1)
#        subplot(212)
#        plot(cor1, label='xcorrt')
#        plot(cor2, label='acorr clip=False')
#        legend()
#        show()
        np.testing.assert_array_almost_equal(cor1, cor2)
コード例 #2
0
ファイル: test_xcorr.py プロジェクト: wangwu1991/sito
 def test_xcorr_acorrt(self):
     data1 = np.sin(np.arange(1001) * 2 * np.pi / 500.)
     cor1 = xcorrt(data1, data1, 1000)
     cor2 = acorrt(data1, 1000, oneside=False, clipdata=False)
     #        from pylab import plot, show, subplot, legend
     #        subplot(211)
     #        plot(data1)
     #        subplot(212)
     #        plot(cor1, label='xcorrt')
     #        plot(cor2, label='acorr clip=False')
     #        legend()
     #        show()
     np.testing.assert_array_almost_equal(cor1, cor2)
コード例 #3
0
ファイル: test_xcorr.py プロジェクト: iceseismic/sito
    def test_xcorr_acorrf(self):
        data1 = np.sin(np.arange(1001) * 2.1 * np.pi / 500.)
        cor1 = acorrt(data1, 1024, oneside=True, clipdata=False)
        cor2 = acorrf(data1, 1024, oneside=True, clipdata=False)
#        from pylab import plot, show, subplot, legend
#        subplot(211)
#        plot(data1)
#        subplot(212)
#        plot(cor1, label='acorrt')
#        plot(cor2, label='acorrf')
#        legend()
#        show()
        print (np.sum((cor1 - cor2) ** 2) / len(cor1)) ** 0.5
        self.assertTrue((np.sum((cor1 - cor2) ** 2) / len(cor1)) ** 0.5 < 0.1)
コード例 #4
0
ファイル: test_xcorr.py プロジェクト: wangwu1991/sito
 def test_xcorr_acorrf(self):
     data1 = np.sin(np.arange(1001) * 2.1 * np.pi / 500.)
     cor1 = acorrt(data1, 1024, oneside=True, clipdata=False)
     cor2 = acorrf(data1, 1024, oneside=True, clipdata=False)
     #        from pylab import plot, show, subplot, legend
     #        subplot(211)
     #        plot(data1)
     #        subplot(212)
     #        plot(cor1, label='acorrt')
     #        plot(cor2, label='acorrf')
     #        legend()
     #        show()
     print(np.sum((cor1 - cor2)**2) / len(cor1))**0.5
     self.assertTrue((np.sum((cor1 - cor2)**2) / len(cor1))**0.5 < 0.1)
コード例 #5
0
ファイル: rf.py プロジェクト: iceseismic/sito
def deconvt(rsp_list, src, spiking, shift, length=None, normalize=True):
    """
    Time domain deconvolution.

    Calculate Toeplitz auto-correlation matrix of source, invert it, add noise
    and multiply it with cross-correlation vector of response and source.

    In a formula:
    RF = (STS + spiking*I)^-1 * STR
    This function calculates RF.

    N... length
        ( S0   S-1  S-2 ... S-N+1 )
        ( S1   S0   S-1 ... S-N+2 )
    S = ( S2   ...                )
        ( ...                     )
        ( SN-1 ...          S0    )
    R = (R0 R1 ... RN-1)^T
    RF = (RF0 RF1 ... RFN-1)^T
    S... source matrix (shape N*N)
    R... response vector (length N)
    RF... receiver function (deconvolution) vector (length N)
    STS = S^T*S = Toeplitz autocorrelation matrix
    STR = S^T*R = cross-correlation vector
    I... Identity


    :parameters:
    rsp_list    (list of) data containing the response
    src         data of source
    spiking     random noise added to autocorrelation (eg. 1.0, 0.1)
    shift       shift the source by that amount of samples to the left side to get onset in RF at the right time
                (negative -> shift source to the right side)
                shift = (middle of rsp window - middle of src window) + (0 - middle rf window)
    length      number of data points of deconvolution
    normalize   if True normalize all deconvolutions so that the maximum of the
                first deconvolution is 1
    :return:    (list of) deconvolutions (length N)
    """
#    time_rf = winrf[1]-winrf[0] = length / samp
#     shift_zero=int(samp*(
#       (winrsp[1] - winrsp[0] - winsrc[1] + winsrc[0] - time_rf) / 2
#       + winrsp[0] - winsrc[0] - winrf[0]))
# =     shift_zero=int(samp*(
#       (winrsp[1] + winrsp[0] - winsrc[1] - winsrc[0] -winrf[1] - winrf[0]) / 2
#
#

    if length == None:
        length = len(src)
    flag = False
    RF_list = []
    STS = acorrt(src, length, demean=False, clipdata=False)
    STS[0] += spiking
    #print shift, len(src), len(rsp_list), spiking, length
    if not isinstance(rsp_list, (list, tuple)):
        flag = True
        rsp_list = [rsp_list]
    for rsp in rsp_list:
        STR = xcorrt(rsp, src, length // 2, shift, demean=False)
        if len(STR) > len(STS):
            STR = np.delete(STR, -1)
        RF = toeplitz(STS, STR)
        RF_list.append(RF)
    if normalize:
        norm = 1 / np.max(np.abs(RF_list[0]))
        for RF in RF_list:
            RF *= norm
    if flag:
        return RF
    else:
        return RF_list

    # comment return commands for testing
    samp = 50.
    from pylab import plot, subplot, show
    subplot(411)
    plot(np.arange(len(src)) / samp, src)
    plot(np.arange(len(rsp)) / samp, rsp)
    subplot(412)
    plot(np.arange(len(STS)) / samp, STS)
    subplot(413)
    plot(np.arange(len(STR)) / samp, STR)
    subplot(414)
    plot(np.arange(len(RF)) / samp, RF_list[0])
    show()
コード例 #6
0
def deconvt(rsp_list, src, spiking, shift, length=None, normalize=True):
    """
    Time domain deconvolution.

    Calculate Toeplitz auto-correlation matrix of source, invert it, add noise
    and multiply it with cross-correlation vector of response and source.

    In a formula:
    RF = (STS + spiking*I)^-1 * STR
    This function calculates RF.

    N... length
        ( S0   S-1  S-2 ... S-N+1 )
        ( S1   S0   S-1 ... S-N+2 )
    S = ( S2   ...                )
        ( ...                     )
        ( SN-1 ...          S0    )
    R = (R0 R1 ... RN-1)^T
    RF = (RF0 RF1 ... RFN-1)^T
    S... source matrix (shape N*N)
    R... response vector (length N)
    RF... receiver function (deconvolution) vector (length N)
    STS = S^T*S = Toeplitz autocorrelation matrix
    STR = S^T*R = cross-correlation vector
    I... Identity


    :parameters:
    rsp_list    (list of) data containing the response
    src         data of source
    spiking     random noise added to autocorrelation (eg. 1.0, 0.1)
    shift       shift the source by that amount of samples to the left side to get onset in RF at the right time
                (negative -> shift source to the right side)
                shift = (middle of rsp window - middle of src window) + (0 - middle rf window)
    length      number of data points of deconvolution
    normalize   if True normalize all deconvolutions so that the maximum of the
                first deconvolution is 1
    :return:    (list of) deconvolutions (length N)
    """
    #    time_rf = winrf[1]-winrf[0] = length / samp
    #     shift_zero=int(samp*(
    #       (winrsp[1] - winrsp[0] - winsrc[1] + winsrc[0] - time_rf) / 2
    #       + winrsp[0] - winsrc[0] - winrf[0]))
    # =     shift_zero=int(samp*(
    #       (winrsp[1] + winrsp[0] - winsrc[1] - winsrc[0] -winrf[1] - winrf[0]) / 2
    #
    #

    if length == None:
        length = len(src)
    flag = False
    RF_list = []
    STS = acorrt(src, length, demean=False, clipdata=False)
    STS[0] += spiking
    #print shift, len(src), len(rsp_list), spiking, length
    if not isinstance(rsp_list, (list, tuple)):
        flag = True
        rsp_list = [rsp_list]
    for rsp in rsp_list:
        STR = xcorrt(rsp, src, length // 2, shift, demean=False)
        if len(STR) > len(STS):
            STR = np.delete(STR, -1)
        RF = toeplitz(STS, STR)
        RF_list.append(RF)
    if normalize:
        norm = 1 / np.max(np.abs(RF_list[0]))
        for RF in RF_list:
            RF *= norm
    if flag:
        return RF
    else:
        return RF_list

    # comment return commands for testing
    samp = 50.
    from pylab import plot, subplot, show
    subplot(411)
    plot(np.arange(len(src)) / samp, src)
    plot(np.arange(len(rsp)) / samp, rsp)
    subplot(412)
    plot(np.arange(len(STS)) / samp, STS)
    subplot(413)
    plot(np.arange(len(STR)) / samp, STR)
    subplot(414)
    plot(np.arange(len(RF)) / samp, RF_list[0])
    show()