コード例 #1
0
 def testget_paramsFail(self):
     # Get params when not all features/class have been enumerated
     dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
     se = StringEnumerator(dataPath, "phenotype")
     with self.assertRaises(Exception) as context:
         se.get_params()
     self.assertTrue("Features and Phenotypes must be fully numeric" in str(
         context.exception))
コード例 #2
0
 def testContValues5000Iterations(self):
     dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/ContinuousAndNonBinaryDiscreteAttributes.csv")
     converter = StringEnumerator(dataPath,"Class")
     headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
     clf = XCS(learning_iterations=5000)
     clf.fit(dataFeatures,dataPhenotypes)
     answer = 0.64
     #print("Continuous Attributes 5000 Iter: "+str(clf.get_final_training_accuracy()))
     self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
コード例 #3
0
 def test20BitMP5000Iterations(self):
     dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer20Modified.csv")
     converter = StringEnumerator(dataPath,"Class")
     headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
     clf = XCS(learning_iterations=5000,N=2000,nu=10)
     clf.fit(dataFeatures,dataPhenotypes)
     answer = 0.6634
     #print("20 Bit 5000 Iter: "+str(clf.get_final_training_accuracy()))
     self.assertTrue(self.approxEqualOrBetter(0.2,clf.get_final_training_accuracy(),answer,True))
コード例 #4
0
 def testPredictInvVar(self):
     dataPath = os.path.join(THIS_DIR,
                             "test/DataSets/Real/Multiplexer6Modified.csv")
     converter = StringEnumerator(dataPath, "Class")
     headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params(
     )
     clf = XCS(learning_iterations=1000,
               N=500,
               nu=10,
               use_inverse_varinance=True,
               p_explore=0.5)
     clf.fit(dataFeatures, dataPhenotypes)
     print("kkkkkkkkkkkkkkkkkkkkkkkkkkk")
     print(clf.predict(clf.env.formatData.savedRawTrainingData[0]))
コード例 #5
0
 def testInverseVariance(self):
     dataPath = os.path.join(THIS_DIR,
                             "test/DataSets/Real/Multiplexer11.csv")
     converter = StringEnumerator(dataPath, "class")
     headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params(
     )
     clf = XCS(learning_iterations=5000,
               N=1000,
               mixing_method="inv-var-only-mixing")
     clf.fit(dataFeatures, dataPhenotypes)
     answer = 0.894
     score = clf.get_final_training_accuracy()
     print("#####################################\n6 Bit 1000 Iter: " +
           str(score))
コード例 #6
0
    def testContValuesAndMissingTesting5000Iterations(self):
        dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/ContinuousAndNonBinaryDiscreteAttributesMissing.csv")
        converter = StringEnumerator(dataPath, "Class")
        headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
        formatted = np.insert(dataFeatures, dataFeatures.shape[1], dataPhenotypes, 1)
        np.random.shuffle(formatted)
        dataFeatures = np.delete(formatted, -1, axis=1)
        dataPhenotypes = formatted[:, -1]

        clf = XCS(learning_iterations=5000)
        score = np.mean(cross_val_score(clf, dataFeatures, dataPhenotypes, cv=3))

        answer = 0.5
        #print("Cont & Missing Testing 5000 Iter: " + str(score))
        self.assertTrue(self.approxEqualOrBetter(0.2, score, answer, True))
コード例 #7
0
    def test6BitMPTesting1000Iterations(self):
        dataPath = os.path.join(THIS_DIR, "test/DataSets/Real/Multiplexer6Modified.csv")
        converter = StringEnumerator(dataPath,"Class")
        headers, classLabel, dataFeatures, dataPhenotypes = converter.get_params()
        formatted = np.insert(dataFeatures, dataFeatures.shape[1], dataPhenotypes, 1)
        np.random.shuffle(formatted)
        dataFeatures = np.delete(formatted, -1, axis=1)
        dataPhenotypes = formatted[:, -1]

        clf = XCS(learning_iterations=1000,N=500,nu=10)
        score = np.mean(cross_val_score(clf, dataFeatures, dataPhenotypes, cv=3))

        answer = 0.9
        #print("6 Bit Testing 1000 Iter: "+str(score))
        self.assertTrue(self.approxEqualOrBetter(0.2,score,answer,True))
コード例 #8
0
    def testNew(self):
        #Use StringEnumerator to gather data
        converter = StringEnumerator("test/DataSets/Real/Multiplexer11.csv",
                                     "class")
        headers, actionLabel, dataFeatures, dataActions = converter.get_params(
        )

        #Shuffle data
        formatted = np.insert(dataFeatures, dataFeatures.shape[1], dataActions,
                              1)
        np.random.shuffle(formatted)
        dataFeatures = np.delete(formatted, -1, axis=1)
        dataActions = formatted[:, -1]

        #Initialize and train model

        clf_inv_var = XCS(learning_iterations=1000,
                          N=200,
                          use_inverse_varinance=True)
        clf_inv_var.fit(dataFeatures, dataActions)
        breakpoint()
コード例 #9
0
 def testget_params2(self):
     # Get Params Test
     dataPath = os.path.join(THIS_DIR, "test/DataSets/Tests/StringData.csv")
     se = StringEnumerator(dataPath, "phenotype")
     se.change_header_name("N1", "gender")
     se.change_header_name("N2", "floats")
     se.change_header_name("N3", "age")
     se.change_class_name("country")
     se.add_attribute_converter("gender",
                                np.array(["female", "male", "NA", "other"]))
     se.add_attribute_converter("age", np.array(["old", "young"]))
     se.add_class_converter_random()
     se.convert_all_attributes()
     dataHeaders, classLabel, dataFeatures, dataPhenotypes = se.get_params()
     cHeaders = np.array(["gender", "floats", "age"])
     cFeatures = np.array([[1, 1.2, 1], [0, 0.3, np.nan], [0, -0.4, 0],
                           [np.nan, 0, 1]])
     cPhenotypes = np.array([0, 1, 0, 2])
     self.assertEqual("country", classLabel)
     self.assertTrue(np.array_equal(cHeaders, dataHeaders))
     self.assertTrue(np.allclose(cFeatures, dataFeatures, equal_nan=True))
     self.assertTrue(
         np.allclose(cPhenotypes, dataPhenotypes, equal_nan=True))