コード例 #1
0
    def plot_global_decisions(self,
                              colors=None,
                              enable_node_id=True,
                              random_state=0,
                              file_name="interpretable_tree.png",
                              show_img=False,
                              fig_size=(20, 8)):
        """ Visualizes the decision policies of the surrogate tree.
        """
        graph_inst = plot_tree(self.__model,
                               self.__model_type,
                               feature_names=self.feature_names,
                               color_list=colors,
                               class_names=self.class_names,
                               enable_node_id=enable_node_id,
                               seed=random_state)
        f_name = "interpretable_tree.png" if file_name is None else file_name
        graph_inst.write_png(f_name)

        try:
            import matplotlib
            matplotlib.use('agg')
            import matplotlib.pyplot as plt
        except ImportError:
            raise exceptions.MatplotlibUnavailableError(
                "Matplotlib is required but unavailable on the system.")
        except RuntimeError:
            raise exceptions.MatplotlibDisplayError(
                "Matplotlib unable to open display")

        if show_img:
            plt.rcParams["figure.figsize"] = fig_size
            img = plt.imread(f_name)
            if self.__model_type == 'regressor':
                cax = plt.imshow(img,
                                 cmap=plt.cm.get_cmap(
                                     graph_inst.get_colorscheme()))
                plt.colorbar(cax)
            else:
                plt.imshow(img)
        return graph_inst
コード例 #2
0
from sklearn.externals.six import StringIO
from sklearn.tree import export_graphviz
import pydotplus
import numpy as np

from skater.util import exceptions
try:
    from matplotlib.colors import rgb2hex
    import matplotlib.pyplot as plt
except ImportError:
    raise (exceptions.MatplotlibUnavailableError(
        "matplotlib is required but unavailable on the system."))

# reference: http://wingraphviz.sourceforge.net/wingraphviz/language/colorname.htm
# TODO: Make the color scheme for regression and classification homogeneous
color_schemes = [
    'aliceblue', 'antiquewhite', 'aquamarine', 'azure', 'beige', 'bisque',
    'black', 'blanchedalmond', 'blue', 'blueviolet', 'brown', 'burlywood',
    'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue',
    'cornsilk', 'crimson', 'cyan', 'darkgoldenrod', 'darkgreen', 'darkkhaki',
    'darkolivegreen', 'darkorange', 'darkorchid', 'darksalmon', 'darkseagreen',
    'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise',
    'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey',
    'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'gainsboro',
    'ghostwhite', 'gold', 'goldenrod', 'gray', 'green', 'greenyellow', 'grey',
    'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender',
    'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan',
    'lightgoldenrod', 'lightgoldenrodyellow', 'lightgray', 'lightgrey',
    'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue',
    'lightslateblue', 'lightslategray', 'lightslategrey', 'lightsteelblue',
    'lightyellow', 'limegreen', 'linen', 'magenta', 'maroon',
コード例 #3
0
ファイル: decision_boundary.py プロジェクト: youjp/Skater
from skater.util import exceptions

try:
    import plotly.offline as py
    py.init_notebook_mode(connected=True)
    import plotly.graph_objs as go
    from plotly import tools
except ImportError:
    raise exceptions.PlotlyUnavailableError("plotly is required but unavailable on your system.")

try:
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from matplotlib import colors as mcolors
except ImportError:
    raise exceptions.MatplotlibUnavailableError("Matplotlib is required but unavailable on your system.")

_enable_axis = lambda ax, flag: ax.axis("on") if flag is True else ax.axis("off")


def _create_meshgrid(xx, yy, plot_step=0.02):
    xmin, xmax = xx.min() - 0.5, xx.max() + 0.5
    ymin, ymax = yy.min() - 0.5, yy.max() + 0.5
    xx, yy = np.meshgrid(np.arange(xmin, xmax, plot_step),
                         np.arange(ymin, ymax, plot_step))
    x_ = pd.DataFrame({'F1': xx.ravel(), 'F2': yy.ravel()})
    return x_, xx, yy


def _generate_contours(est, X_, xx, yy, color_map, ax, **params):
    Z = est.predict(X_).reshape(xx.shape)