def _coerce_alignment_input_type(seq, disallow_alignment): """ Converts variety of types into an skbio.Alignment object """ if isinstance(seq, string_types): return Alignment([Sequence(seq, metadata={'id': ''})]) elif isinstance(seq, Sequence): if 'id' in seq.metadata: return Alignment([seq]) else: seq = seq.copy() seq.metadata['id'] = '' return Alignment([seq]) elif isinstance(seq, Alignment): if disallow_alignment: # This will disallow aligning either a pair of alignments, or an # alignment and a sequence. We don't currently support this for # local alignment as there is not a clear usecase, and it's also # not exactly clear how this would work. raise TypeError("Aligning alignments is not currently supported " "with the aligner function that you're calling.") else: return seq else: raise TypeError("Unsupported type provided to aligner: %r." % type(seq))
def __call__(self, seq_path, result_path=None, log_path=None, failure_path=None): # load candidate sequences seq_file = open(seq_path, 'U') candidate_sequences = parse_fasta(seq_file) # load template sequences template_alignment = [] template_alignment_fp = self.Params['template_filepath'] for seq_id, seq in parse_fasta(open(template_alignment_fp)): # replace '.' characters with '-' characters template_alignment.append((seq_id, seq.replace('.', '-').upper())) template_alignment = Alignment.from_fasta_records(template_alignment, DNASequence, validate=True) # initialize_logger logger = NastLogger(log_path) # get function for pairwise alignment method pairwise_alignment_f = pairwise_alignment_methods[ self.Params['pairwise_alignment_method']] pynast_aligned, pynast_failed = pynast_seqs( candidate_sequences, template_alignment, min_pct=self.Params['min_pct'], min_len=self.Params['min_len'], align_unaligned_seqs_f=pairwise_alignment_f, logger=logger, temp_dir=get_qiime_temp_dir()) logger.record(str(self)) for i, seq in enumerate(pynast_failed): skb_seq = DNASequence(str(seq), id=seq.Name) pynast_failed[i] = skb_seq pynast_failed = SequenceCollection(pynast_failed) for i, seq in enumerate(pynast_aligned): skb_seq = DNASequence(str(seq), id=seq.Name) pynast_aligned[i] = skb_seq pynast_aligned = Alignment(pynast_aligned) if failure_path is not None: fail_file = open(failure_path, 'w') fail_file.write(pynast_failed.to_fasta()) fail_file.close() if result_path is not None: result_file = open(result_path, 'w') result_file.write(pynast_aligned.to_fasta()) result_file.close() return None else: return pynast_aligned
def __call__(self, seq_path, result_path=None, log_path=None, failure_path=None): # load candidate sequences seq_file = open(seq_path, 'U') candidate_sequences = parse_fasta(seq_file) # load template sequences template_alignment = [] template_alignment_fp = self.Params['template_filepath'] for seq_id, seq in parse_fasta(open(template_alignment_fp)): # replace '.' characters with '-' characters template_alignment.append((seq_id, seq.replace('.', '-').upper())) template_alignment = Alignment.from_fasta_records( template_alignment, DNASequence, validate=True) # initialize_logger logger = NastLogger(log_path) # get function for pairwise alignment method pairwise_alignment_f = pairwise_alignment_methods[ self.Params['pairwise_alignment_method']] pynast_aligned, pynast_failed = pynast_seqs( candidate_sequences, template_alignment, min_pct=self.Params['min_pct'], min_len=self.Params['min_len'], align_unaligned_seqs_f=pairwise_alignment_f, logger=logger, temp_dir=get_qiime_temp_dir()) logger.record(str(self)) for i, seq in enumerate(pynast_failed): skb_seq = DNASequence(str(seq), id=seq.Name) pynast_failed[i] = skb_seq pynast_failed = SequenceCollection(pynast_failed) for i, seq in enumerate(pynast_aligned): skb_seq = DNASequence(str(seq), id=seq.Name) pynast_aligned[i] = skb_seq pynast_aligned = Alignment(pynast_aligned) if failure_path is not None: fail_file = open(failure_path, 'w') fail_file.write(pynast_failed.to_fasta()) fail_file.close() if result_path is not None: result_file = open(result_path, 'w') result_file.write(pynast_aligned.to_fasta()) result_file.close() return None else: return pynast_aligned
def remove_outliers(seqs, num_stds, fraction_seqs_for_stats=.95): """ remove sequences very different from the majority consensus given aligned sequences, will: 1. calculate a majority consensus (most common symbol at each position of the alignment); 2. compute the mean/std edit distance of each seq to the consensus; 3. discard sequences whose edit dist is greater than the cutoff, which is defined as being `num_stds` greater than the mean. """ # load the alignment and compute the consensus sequence aln = Alignment.from_fasta_records(parse_fasta(seqs), DNA) consensus_seq = aln.majority_consensus() # compute the hamming distance between all sequences in the alignment # and the consensus sequence dists_to_consensus = [s.distance(consensus_seq) for s in aln] # compute the average and standard deviation distance from the consensus average_distance = mean(dists_to_consensus) std_distance = std(dists_to_consensus) # compute the distance cutoff dist_cutoff = average_distance + num_stds * std_distance # for all sequences, determine if they're distance to the consensus # is less then or equal to the cutoff distance. if so, add the sequence's # identifier to the list of sequence identifiers to keep seqs_to_keep = [] for seq_id, dist_to_consensus in izip(aln.ids(), dists_to_consensus): if dist_to_consensus <= dist_cutoff: seqs_to_keep.append(seq_id) # filter the alignment to only keep the sequences identified in the step # above filtered_aln = aln.subalignment(seqs_to_keep=seqs_to_keep) # and return the filtered alignment return filtered_aln
def generate_lane_mask(infile, entropy_threshold, existing_mask=None): """ Generates lane mask dynamically by calculating base frequencies infile: open file object for aligned fasta file entropy_threshold: float value that designates the percentage of entropic positions to be removed, i.e., 0.10 means the 10% most entropic positions are removed. """ aln = Alignment.from_fasta_records(parse_fasta(infile), DNA) uncertainty = aln.position_entropies(nan_on_non_standard_chars=False) uncertainty_sorted = sorted(uncertainty) cutoff_index = int( round((len(uncertainty_sorted) - 1) * (1 - entropy_threshold))) max_uncertainty = uncertainty_sorted[cutoff_index] # This correction is for small datasets with a small possible number of # uncertainty values. highest_certainty = min(uncertainty_sorted) lane_mask = "" for base in uncertainty: if base >= max_uncertainty and base != highest_certainty: lane_mask += "0" else: lane_mask += "1" return lane_mask
def generate_lane_mask(infile, entropy_threshold, existing_mask=None): """ Generates lane mask dynamically by calculating base frequencies infile: open file object for aligned fasta file entropy_threshold: float value that designates the percentage of entropic positions to be removed, i.e., 0.10 means the 10% most entropic positions are removed. """ aln = Alignment.from_fasta_records(parse_fasta(infile), DNA) uncertainty = aln.position_entropies(nan_on_non_standard_chars=False) uncertainty_sorted = sorted(uncertainty) cutoff_index = int(round((len(uncertainty_sorted) - 1) * (1 - entropy_threshold))) max_uncertainty = uncertainty_sorted[cutoff_index] # This correction is for small datasets with a small possible number of # uncertainty values. highest_certainty = min(uncertainty_sorted) lane_mask = "" for base in uncertainty: if base >= max_uncertainty and base != highest_certainty: lane_mask += "0" else: lane_mask += "1" return lane_mask
def getResult(self, aln_path, *args, **kwargs): """Returns alignment from sequences. Currently does not allow parameter tuning of program and uses default parameters -- this is bad and should be fixed. #TODO: allow command-line access to important aln params. """ module = self.Params['Module'] # standard qiime says we just consider the first word as the unique ID # the rest of the defline of the fasta alignment often doesn't match # the otu names in the otu table with open(aln_path) as aln_f: seqs = Alignment.from_fasta_records( parse_fasta(aln_f, label_to_name=lambda x: x.split()[0]), DNA) # This ugly little line of code lets us pass a skbio Alignment when a # a cogent alignment is expected. seqs.getIntMap = seqs.int_map result = module.build_tree_from_alignment(seqs) try: root_method = kwargs['root_method'] if root_method == 'midpoint': result = root_midpt(result) elif root_method == 'tree_method_default': pass except KeyError: pass return result
def _fasta_to_alignment(fh, qual=FileSentinel, constructor=Sequence, **kwargs): return Alignment( list( _fasta_to_generator(fh, qual=qual, constructor=constructor, **kwargs)))
def _clustal_to_alignment(fh, strict=True): r"""yields labels and sequences from msa (multiple sequence alignment) Parameters ---------- fh : open file object An open Clustal file. strict : boolean Whether or not to raise a ``ClustalFormatError`` when no labels are found. Returns ------- skbio.Alignment Alignment object containing aligned biogical sequences Raises ------ skbio.util.exception.ClustalFormatError If the sequences in `fh` don't have the same sequence length or if the sequence ids don't properly match with the subsequences Notes ----- Skips any line that starts with a blank. ``_clustal_to_alignment`` preserves the order of the sequences from the original file. However, it does use a dict as an intermediate, so two sequences can't have the same label. This is probably OK since Clustal will refuse to run on a FASTA file in which two sequences have the same label, but could potentially cause trouble with manually edited files (all the segments of the conflicting sequences would be interleaved, possibly in an unpredictable way). If the lines have trailing numbers (i.e. Clustal was run with `-LINENOS=ON`), silently deletes them. Does not check that the numbers actually correspond to the number of chars in the sequence printed so far. References ---------- .. [1] Thompson JD, Higgins DG, Gibson TJ, "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Thompson", Nucleic Acids Res. 1994 Nov 11;22(22):4673-80. """ records = map(_delete_trailing_number, filter(_is_clustal_seq_line, fh)) data, labels = _label_line_parser(records, strict) aligned_correctly = _check_length(data, labels) if not aligned_correctly: raise ClustalFormatError("Sequences not aligned properly") alns = [] for key in labels: alns.append(Sequence(sequence=''.join(data[key]), metadata={'id': key})) return Alignment(alns)
def _fastq_to_alignment(fh, variant=None, phred_offset=None, constructor=BiologicalSequence): return Alignment( list( _fastq_to_generator(fh, variant=variant, phred_offset=phred_offset, constructor=constructor)))
def _fastq_to_alignment(fh, variant=None, phred_offset=None, constructor=Sequence, **kwargs): return Alignment( list( _fastq_to_generator(fh, variant=variant, phred_offset=phred_offset, constructor=constructor, **kwargs)))
def test_call_pynast_test1_alt_min_len(self): """PyNastAligner: returns no result when min_len too high """ aligner = PyNastAligner({ 'template_filepath': self.pynast_test1_template_fp, 'min_len': 1000 }) actual_aln = aligner(self.pynast_test1_input_fp) expected_aln = Alignment([]) self.assertEqual(actual_aln, expected_aln)
def apply_lane_mask_and_gap_filter(fastalines, mask, allowed_gap_frac=1. - 1e-6, entropy_threshold=None): """Applies a mask and gap filter to fasta file, yielding filtered seqs.""" # load the alignment aln = Alignment.from_fasta_records(parse_fasta(fastalines), DNA) # build the entropy mask if mask is None and entropy_threshold is None: if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) elif mask is not None and entropy_threshold is not None: raise ValueError('only mask or entropy threshold can be provided.') elif mask is not None: # a pre-computed mask (e.g., Lane mask) was provided, so apply that # and then remove highly gapped positions (gap positions have to be # removed after the mask-based filtering so that the positions in the # mask correspond with the positions in the alignment at the time of # filtering) entropy_mask = mask_to_positions(mask) aln = aln.subalignment(positions_to_keep=entropy_mask) if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) elif entropy_threshold is not None: # a mask is being computed on the fly to filter the entropy_threshold # most entropic positions. if highly gapped positions are being omitted # those are filtered first, so the entropy scores for those positions # aren't included when determining the entropy threshold (since the # positions that are mostly gaps will be counted as a lot of low # entropy positions) if not (0 <= entropy_threshold <= 1): raise ValueError('entropy_threshold needs to be between 0 and 1' ' (inclusive)') if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) entropy_mask = generate_lane_mask(aln, entropy_threshold) entropy_mask = mask_to_positions(entropy_mask) aln = aln.subalignment(positions_to_keep=entropy_mask) else: # it shouldn't be possible to get here raise ValueError("Can't resolve parameters for " "apply_lane_mask_and_gap_filter.") if aln.sequence_length() == 0: raise ValueError("Positional filtering resulted in removal of all " "alignment positions.") for seq in aln: yield ">%s\n" % seq.id yield "%s\n" % seq
def apply_lane_mask_and_gap_filter(fastalines, mask, allowed_gap_frac=1.-1e-6, entropy_threshold=None): """Applies a mask and gap filter to fasta file, yielding filtered seqs.""" # load the alignment aln = Alignment.from_fasta_records(parse_fasta(fastalines), DNA) # build the entropy mask if mask is None and entropy_threshold is None: if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) elif mask is not None and entropy_threshold is not None: raise ValueError('only mask or entropy threshold can be provided.') elif mask is not None: # a pre-computed mask (e.g., Lane mask) was provided, so apply that # and then remove highly gapped positions (gap positions have to be # removed after the mask-based filtering so that the positions in the # mask correspond with the positions in the alignment at the time of # filtering) entropy_mask = mask_to_positions(mask) aln = aln.subalignment(positions_to_keep=entropy_mask) if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) elif entropy_threshold is not None: # a mask is being computed on the fly to filter the entropy_threshold # most entropic positions. if highly gapped positions are being omitted # those are filtered first, so the entropy scores for those positions # aren't included when determining the entropy threshold (since the # positions that are mostly gaps will be counted as a lot of low # entropy positions) if not (0 <= entropy_threshold <= 1): raise ValueError('entropy_threshold needs to be between 0 and 1' ' (inclusive)') if allowed_gap_frac < 1: aln = aln.omit_gap_positions(allowed_gap_frac) entropy_mask = generate_lane_mask(aln, entropy_threshold) entropy_mask = mask_to_positions(entropy_mask) aln = aln.subalignment(positions_to_keep=entropy_mask) else: # it shouldn't be possible to get here raise ValueError("Can't resolve parameters for " "apply_lane_mask_and_gap_filter.") if aln.sequence_length() == 0: raise ValueError("Positional filtering resulted in removal of all " "alignment positions.") for seq in aln: yield ">%s\n" % seq.id yield "%s\n" % seq
def test_call_infernal_test1_file_output(self): """InfernalAligner writes correct output files for infernal_test1 seqs """ # do not collect results; check output files instead actual = self.infernal_test1_aligner(self.infernal_test1_input_fp, result_path=self.result_fp, log_path=self.log_fp) self.assertTrue(actual is None, "Result should be None when result path provided.") expected_aln = self.infernal_test1_expected_aln with open(self.result_fp) as result_f: actual_aln = Alignment.from_fasta_records(parse_fasta(result_f), DNA) self.assertEqual(actual_aln, expected_aln)
def test_call_infernal_test1_file_output(self): """InfernalAligner writes correct output files for infernal_test1 seqs """ # do not collect results; check output files instead actual = self.infernal_test1_aligner( self.infernal_test1_input_fp, result_path=self.result_fp, log_path=self.log_fp) self.assertTrue(actual is None, "Result should be None when result path provided.") expected_aln = self.infernal_test1_expected_aln with open(self.result_fp) as result_f: actual_aln = Alignment.from_fasta_records(parse_fasta( result_f), DNA) self.assertEqual(actual_aln, expected_aln)
def test_call_pynast_test1_file_output(self): """PyNastAligner writes correct output files for pynast_test1 seqs """ # do not collect results; check output files instead actual = self.pynast_test1_aligner( self.pynast_test1_input_fp, result_path=self.result_fp, log_path=self.log_fp, failure_path=self.failure_fp) self.assertTrue(actual is None, "Result should be None when result path provided.") expected_aln = self.pynast_test1_expected_aln with open(self.result_fp) as result_f: actual_aln = Alignment.from_fasta_records(parse_fasta( result_f), DNA) self.assertEqual(actual_aln, expected_aln) with open(self.failure_fp) as failure_f: actual_fail = SequenceCollection.from_fasta_records( parse_fasta(failure_f), DNA) self.assertEqual(actual_fail.to_fasta(), self.pynast_test1_expected_fail.to_fasta())
def setUp(self): fd, self.infernal_test1_input_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='.fasta') close(fd) with open(self.infernal_test1_input_fp, 'w') as in_f: in_f.write('\n'.join(infernal_test1_input_fasta)) fd, self.infernal_test1_template_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='template.sto') close(fd) with open(self.infernal_test1_template_fp, 'w') as in_f: in_f.write(infernal_test1_template_stockholm) # create temp file names (and touch them so we can reliably # clean them up) fd, self.result_fp = mkstemp(prefix='InfernalAlignerTests_', suffix='.fasta') close(fd) open(self.result_fp, 'w').close() fd, self.log_fp = mkstemp(prefix='InfernalAlignerTests_', suffix='.log') close(fd) open(self.log_fp, 'w').close() self._paths_to_clean_up = [ self.infernal_test1_input_fp, self.result_fp, self.log_fp, self.infernal_test1_template_fp, ] self.infernal_test1_aligner = InfernalAligner({ 'template_filepath': self.infernal_test1_template_fp, }) self.infernal_test1_expected_aln = Alignment.from_fasta_records( parse_fasta(infernal_test1_expected_alignment), DNA)
def setUp(self): fd, self.infernal_test1_input_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='.fasta') close(fd) with open(self.infernal_test1_input_fp, 'w') as in_f: in_f.write('\n'.join(infernal_test1_input_fasta)) fd, self.infernal_test1_template_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='template.sto') close(fd) with open(self.infernal_test1_template_fp, 'w') as in_f: in_f.write(infernal_test1_template_stockholm) # create temp file names (and touch them so we can reliably # clean them up) fd, self.result_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='.fasta') close(fd) open(self.result_fp, 'w').close() fd, self.log_fp = mkstemp( prefix='InfernalAlignerTests_', suffix='.log') close(fd) open(self.log_fp, 'w').close() self._paths_to_clean_up = [ self.infernal_test1_input_fp, self.result_fp, self.log_fp, self.infernal_test1_template_fp, ] self.infernal_test1_aligner = InfernalAligner({ 'template_filepath': self.infernal_test1_template_fp, }) self.infernal_test1_expected_aln = Alignment.from_fasta_records( parse_fasta(infernal_test1_expected_alignment), DNA)
def setUp(self): fd, self.pynast_test1_input_fp = mkstemp(prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) with open(self.pynast_test1_input_fp, 'w') as f: f.write(pynast_test1_input_fasta) fd, self.pynast_test1_template_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test1_template_fp, 'w') as f: f.write(pynast_test1_template_fasta) fd, self.pynast_test_template_w_dots_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_dots_fp, 'w') as f: f.write(pynast_test1_template_fasta.replace('-', '.')) fd, self.pynast_test_template_w_u_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_u_fp, 'w') as f: f.write(pynast_test1_template_fasta.replace('T', 'U')) fd, self.pynast_test_template_w_lower_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_lower_fp, 'w') as f: f.write(pynast_test1_template_fasta.lower()) # create temp file names (and touch them so we can reliably # clean them up) fd, self.result_fp = mkstemp(prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) open(self.result_fp, 'w').close() fd, self.failure_fp = mkstemp(prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) open(self.failure_fp, 'w').close() fd, self.log_fp = mkstemp(prefix='PyNastAlignerTests_', suffix='.log') close(fd) open(self.log_fp, 'w').close() self._paths_to_clean_up = [ self.pynast_test1_input_fp, self.result_fp, self.failure_fp, self.log_fp, self.pynast_test1_template_fp, self.pynast_test_template_w_dots_fp, self.pynast_test_template_w_u_fp, self.pynast_test_template_w_lower_fp ] self.pynast_test1_aligner = PyNastAligner({ 'template_filepath': self.pynast_test1_template_fp, 'min_len': 15, }) self.pynast_test1_expected_aln = Alignment.from_fasta_records( parse_fasta(pynast_test1_expected_alignment), DNA) self.pynast_test1_expected_fail = SequenceCollection.from_fasta_records( parse_fasta(pynast_test1_expected_failure), DNA)
def _fasta_to_alignment(fh, qual=FileSentinel, constructor=BiologicalSequence): return Alignment( list(_fasta_to_generator(fh, qual=qual, constructor=constructor)))
def setUp(self): fd, self.pynast_test1_input_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) with open(self.pynast_test1_input_fp, 'w') as f: f.write(pynast_test1_input_fasta) fd, self.pynast_test1_template_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test1_template_fp, 'w') as f: f.write(pynast_test1_template_fasta) fd, self.pynast_test_template_w_dots_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_dots_fp, 'w') as f: f.write(pynast_test1_template_fasta.replace('-', '.')) fd, self.pynast_test_template_w_u_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_u_fp, 'w') as f: f.write(pynast_test1_template_fasta.replace('T', 'U')) fd, self.pynast_test_template_w_lower_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='template.fasta') close(fd) with open(self.pynast_test_template_w_lower_fp, 'w') as f: f.write(pynast_test1_template_fasta.lower()) # create temp file names (and touch them so we can reliably # clean them up) fd, self.result_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) open(self.result_fp, 'w').close() fd, self.failure_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='.fasta') close(fd) open(self.failure_fp, 'w').close() fd, self.log_fp = mkstemp( prefix='PyNastAlignerTests_', suffix='.log') close(fd) open(self.log_fp, 'w').close() self._paths_to_clean_up = [ self.pynast_test1_input_fp, self.result_fp, self.failure_fp, self.log_fp, self.pynast_test1_template_fp, self.pynast_test_template_w_dots_fp, self.pynast_test_template_w_u_fp, self.pynast_test_template_w_lower_fp ] self.pynast_test1_aligner = PyNastAligner({ 'template_filepath': self.pynast_test1_template_fp, 'min_len': 15, }) self.pynast_test1_expected_aln = Alignment.from_fasta_records( parse_fasta(pynast_test1_expected_alignment), DNA) self.pynast_test1_expected_fail = SequenceCollection.from_fasta_records( parse_fasta(pynast_test1_expected_failure), DNA)
def __call__(self, seq_path, result_path=None, log_path=None, failure_path=None, cmbuild_params=None, cmalign_params=None): log_params = [] # load candidate sequences candidate_sequences = dict(parse_fasta(open(seq_path, 'U'))) # load template sequences try: info, template_alignment, struct = list(MinimalRfamParser(open( self.Params['template_filepath'], 'U'), seq_constructor=ChangedSequence))[0] except RecordError: raise ValueError( "Template alignment must be in Stockholm format with corresponding secondary structure annotation when using InfernalAligner.") # Need to make separate mapping for unaligned sequences unaligned = SequenceCollection.from_fasta_records( candidate_sequences.iteritems(), DNASequence) mapped_seqs, new_to_old_ids = unaligned.int_map(prefix='unaligned_') mapped_seq_tuples = [(k, str(v)) for k,v in mapped_seqs.iteritems()] # Turn on --gapthresh option in cmbuild to force alignment to full # model if cmbuild_params is None: cmbuild_params = {} cmbuild_params.update({'--gapthresh': 1.0}) # record cmbuild parameters log_params.append('cmbuild parameters:') log_params.append(str(cmbuild_params)) # Turn on --sub option in Infernal, since we know the unaligned sequences # are fragments. # Also turn on --gapthresh to use same gapthresh as was used to build # model if cmalign_params is None: cmalign_params = {} cmalign_params.update({'--sub': True, '--gapthresh': 1.0}) # record cmalign parameters log_params.append('cmalign parameters:') log_params.append(str(cmalign_params)) # Align sequences to alignment including alignment gaps. aligned, struct_string = cmalign_from_alignment(aln=template_alignment, structure_string=struct, seqs=mapped_seq_tuples, include_aln=True, params=cmalign_params, cmbuild_params=cmbuild_params) # Pull out original sequences from full alignment. infernal_aligned = [] # Get a dict of the ids to sequences (note that this is a # cogent alignment object, hence the call to NamedSeqs) aligned_dict = aligned.NamedSeqs for n, o in new_to_old_ids.iteritems(): aligned_seq = aligned_dict[n] infernal_aligned.append((o, aligned_seq)) # Create an Alignment object from alignment dict infernal_aligned = Alignment.from_fasta_records(infernal_aligned, DNASequence) if log_path is not None: log_file = open(log_path, 'w') log_file.write('\n'.join(log_params)) log_file.close() if result_path is not None: result_file = open(result_path, 'w') result_file.write(infernal_aligned.to_fasta()) result_file.close() return None else: try: return infernal_aligned except ValueError: return {}
def _phylip_to_alignment(fh, constructor=Sequence): return Alignment([constructor(seq, metadata={'id': ID}) for (seq, ID) in _parse_phylip_raw(fh)])
def local_pairwise_align_ssw(sequence1, sequence2, constructor=Sequence, **kwargs): """Align query and target sequences with Striped Smith-Waterman. Parameters ---------- sequence1 : str or Sequence The first unaligned sequence sequence2 : str or Sequence The second unaligned sequence constructor : Sequence subclass A constructor to use if `protein` is not True. Returns ------- ``skbio.alignment.Alignment`` The resulting alignment as an Alignment object Notes ----- This is a wrapper for the SSW package [1]_. For a complete list of optional keyword-arguments that can be provided, see ``skbio.alignment.StripedSmithWaterman``. The following kwargs will not have any effect: `suppress_sequences` and `zero_index` If an alignment does not meet a provided filter, `None` will be returned. References ---------- .. [1] Zhao, Mengyao, Wan-Ping Lee, Erik P. Garrison, & Gabor T. Marth. "SSW Library: An SIMD Smith-Waterman C/C++ Library for Applications". PLOS ONE (2013). Web. 11 July 2014. http://www.plosone.org/article/info:doi/10.1371/journal.pone.0082138 See Also -------- skbio.alignment.StripedSmithWaterman """ # We need the sequences for `Alignment` to make sense, so don't let the # user suppress them. kwargs['suppress_sequences'] = False kwargs['zero_index'] = True if isinstance(sequence1, Protein): kwargs['protein'] = True query = StripedSmithWaterman(str(sequence1), **kwargs) alignment = query(str(sequence2)) # If there is no cigar, then it has failed a filter. Return None. if not alignment.cigar: return None start_end = None if alignment.query_begin != -1: start_end = [(alignment.query_begin, alignment.query_end), (alignment.target_begin, alignment.target_end_optimal)] if kwargs.get('protein', False): seqs = [ Protein(alignment.aligned_query_sequence, metadata={'id': 'query'}), Protein(alignment.aligned_target_sequence, metadata={'id': 'target'}) ] else: seqs = [ constructor(alignment.aligned_query_sequence, metadata={'id': 'query'}), constructor(alignment.aligned_target_sequence, metadata={'id': 'target'}) ] return Alignment(seqs, score=alignment.optimal_alignment_score, start_end_positions=start_end)
def local_pairwise_align(seq1, seq2, gap_open_penalty, gap_extend_penalty, substitution_matrix): """Locally align exactly two seqs with Smith-Waterman Parameters ---------- seq1 : str or BiologicalSequence The first unaligned sequence. seq2 : str or BiologicalSequence The second unaligned sequence. gap_open_penalty : int or float Penalty for opening a gap (this is substracted from previous best alignment score, so is typically positive). gap_extend_penalty : int or float Penalty for extending a gap (this is substracted from previous best alignment score, so is typically positive). substitution_matrix: 2D dict (or similar) Lookup for substitution scores (these values are added to the previous best alignment score). Returns ------- skbio.Alignment ``Alignment`` object containing the aligned sequences as well as details about the alignment. See Also -------- local_pairwise_align_protein local_pairwise_align_nucleotide skbio.alignment.local_pairwise_align_ssw global_pairwise_align global_pairwise_align_protein global_pairwise_align_nucelotide Notes ----- This algorithm was originally described in [1]_. The scikit-bio implementation was validated against the EMBOSS water web server [2]_. References ---------- .. [1] Identification of common molecular subsequences. Smith TF, Waterman MS. J Mol Biol. 1981 Mar 25;147(1):195-7. .. [2] http://www.ebi.ac.uk/Tools/psa/emboss_water/ """ warn("You're using skbio's python implementation of Smith-Waterman " "alignment. This will be very slow (e.g., thousands of times slower) " "than skbio.alignment.local_pairwise_align_ssw.", EfficiencyWarning) seq1 = _coerce_alignment_input_type(seq1, disallow_alignment=True) seq2 = _coerce_alignment_input_type(seq2, disallow_alignment=True) score_matrix, traceback_matrix = _compute_score_and_traceback_matrices( seq1, seq2, gap_open_penalty, gap_extend_penalty, substitution_matrix, new_alignment_score=0.0, init_matrices_f=_init_matrices_sw) end_row_position, end_col_position =\ np.unravel_index(np.argmax(score_matrix), score_matrix.shape) aligned1, aligned2, score, seq1_start_position, seq2_start_position = \ _traceback(traceback_matrix, score_matrix, seq1, seq2, end_row_position, end_col_position) start_end_positions = [(seq1_start_position, end_col_position-1), (seq2_start_position, end_row_position-1)] return Alignment(aligned1 + aligned2, score=score, start_end_positions=start_end_positions)
def global_pairwise_align(seq1, seq2, gap_open_penalty, gap_extend_penalty, substitution_matrix, penalize_terminal_gaps=False): """Globally align a pair of seqs or alignments with Needleman-Wunsch Parameters ---------- seq1 : str, BiologicalSequence, or Alignment The first unaligned sequence(s). seq2 : str, BiologicalSequence, or Alignment The second unaligned sequence(s). gap_open_penalty : int or float Penalty for opening a gap (this is substracted from previous best alignment score, so is typically positive). gap_extend_penalty : int or float Penalty for extending a gap (this is substracted from previous best alignment score, so is typically positive). substitution_matrix: 2D dict (or similar) Lookup for substitution scores (these values are added to the previous best alignment score). penalize_terminal_gaps: bool, optional If True, will continue to penalize gaps even after one sequence has been aligned through its end. This behavior is true Needleman-Wunsch alignment, but results in (biologically irrelevant) artifacts when the sequences being aligned are of different length. This is ``False`` by default, which is very likely to be the behavior you want in all or nearly all cases. Returns ------- skbio.Alignment ``Alignment`` object containing the aligned sequences as well as details about the alignment. See Also -------- local_pairwise_align local_pairwise_align_protein local_pairwise_align_nucleotide skbio.alignment.local_pairwise_align_ssw global_pairwise_align_protein global_pairwise_align_nucelotide Notes ----- This algorithm (in a slightly more basic form) was originally described in [1]_. The scikit-bio implementation was validated against the EMBOSS needle web server [2]_. This function can be use to align either a pair of sequences, a pair of alignments, or a sequence and an alignment. References ---------- .. [1] A general method applicable to the search for similarities in the amino acid sequence of two proteins. Needleman SB, Wunsch CD. J Mol Biol. 1970 Mar;48(3):443-53. .. [2] http://www.ebi.ac.uk/Tools/psa/emboss_needle/ """ warn("You're using skbio's python implementation of Needleman-Wunsch " "alignment. This is known to be very slow (e.g., thousands of times " "slower than a native C implementation). We'll be adding a faster " "version soon (see https://github.com/biocore/scikit-bio/issues/254 " "to track progress on this).", EfficiencyWarning) seq1 = _coerce_alignment_input_type(seq1, disallow_alignment=False) seq2 = _coerce_alignment_input_type(seq2, disallow_alignment=False) if penalize_terminal_gaps: init_matrices_f = _init_matrices_nw else: init_matrices_f = _init_matrices_nw_no_terminal_gap_penalty score_matrix, traceback_matrix = \ _compute_score_and_traceback_matrices( seq1, seq2, gap_open_penalty, gap_extend_penalty, substitution_matrix, new_alignment_score=-np.inf, init_matrices_f=init_matrices_f, penalize_terminal_gaps=penalize_terminal_gaps) end_row_position = traceback_matrix.shape[0] - 1 end_col_position = traceback_matrix.shape[1] - 1 aligned1, aligned2, score, seq1_start_position, seq2_start_position = \ _traceback(traceback_matrix, score_matrix, seq1, seq2, end_row_position, end_col_position) start_end_positions = [(seq1_start_position, end_col_position-1), (seq2_start_position, end_row_position-1)] return Alignment(aligned1 + aligned2, score=score, start_end_positions=start_end_positions)