def test_enspie(self): # Totally even community should have ENS_pie = number of OTUs. self.assertAlmostEqual(enspie(np.array([1, 1, 1, 1, 1, 1])), 6) self.assertAlmostEqual(enspie(np.array([13, 13, 13, 13])), 4) # Hand calculated. arr = np.array([1, 41, 0, 0, 12, 13]) exp = 1 / ((arr / arr.sum()) ** 2).sum() self.assertAlmostEqual(enspie(arr), exp) # Using dominance. exp = 1 / dominance(arr) self.assertAlmostEqual(enspie(arr), exp) arr = np.array([1, 0, 2, 5, 2]) exp = 1 / dominance(arr) self.assertAlmostEqual(enspie(arr), exp)
def test_enspie(self): # Totally even community should have ENS_pie = number of OTUs. self.assertAlmostEqual(enspie(np.array([1, 1, 1, 1, 1, 1])), 6) self.assertAlmostEqual(enspie(np.array([13, 13, 13, 13])), 4) # Hand calculated. arr = np.array([1, 41, 0, 0, 12, 13]) exp = 1 / ((arr / arr.sum())**2).sum() self.assertAlmostEqual(enspie(arr), exp) # Using dominance. exp = 1 / dominance(arr) self.assertAlmostEqual(enspie(arr), exp) arr = np.array([1, 0, 2, 5, 2]) exp = 1 / dominance(arr) self.assertAlmostEqual(enspie(arr), exp)
def mercat_compute_alpha_beta_diversity(counts,bif): abm = dict() abm['shannon'] = skbio_alpha.shannon(counts) abm['simpson'] = skbio_alpha.simpson(counts) abm['simpson_e'] = skbio_alpha.simpson_e(counts) abm['goods_coverage'] = skbio_alpha.goods_coverage(counts) abm['fisher_alpha'] = skbio_alpha.fisher_alpha(counts) abm['dominance'] = skbio_alpha.dominance(counts) abm['chao1'] = skbio_alpha.chao1(counts) abm['chao1_ci'] = skbio_alpha.chao1_ci(counts) abm['ace'] = skbio_alpha.ace(counts) with open(bif + "_diversity_metrics.txt", 'w') as dmptr: for abmetric in abm: dmptr.write(abmetric + " = " + str(abm[abmetric]) + "\n")
def test_dominance(self): self.assertEqual(dominance(np.array([5])), 1) self.assertAlmostEqual(dominance(np.array([1, 0, 2, 5, 2])), 0.34)
# Dissolving print('[INFO] - Dissolving results') dissolved = joined.dissolve(by='id', aggfunc=lambda x: list(x)) # Getting output length dis_len = len(dissolved) # Counting language dominance, menhinick diversity and simpson index print('[INFO] - Calculating variables..') for i, row in dissolved.iterrows(): print("[INFO] - Calculating grid cell {}/{}...".format(i, dis_len)) lang_counts = list(Counter( row[args['language']]).values()) # occurence counts lang_counts = np.asarray(lang_counts) # cast as numpy array for skbio dissolved.at[i, 'dominance'] = sk.dominance(lang_counts) dissolved.at[i, 'menhinick'] = sk.menhinick(lang_counts) dissolved.at[i, 'simpson'] = sk.simpson(lang_counts) dissolved.at[i, 'berger'] = sk.berger_parker_d(lang_counts) dissolved.at[i, 'singles'] = sk.singles(lang_counts) dissolved.at[i, 'shannon'] = np.exp(sk.shannon(lang_counts, base=np.e)) dissolved.at[i, 'unique'] = sk.observed_otus(lang_counts) # Select columns for output cols = [ 'geometry', 'dominance', 'menhinick', 'simpson', 'berger', 'singles', 'shannon', 'unique' ] output = dissolved[cols] # Save the output to pickle
joined = gpd.sjoin(grid, points, how='inner', op='contains') # Dissolving print('[INFO] - Dissolving results') dissolved = joined.dissolve(by='id', aggfunc=lambda x: list(x)) # Getting output length dis_len = len(dissolved) # Counting topic dominance, menhinick diversity and simpson index print('[INFO] - Calculating variables..') for i, row in dissolved.iterrows(): print("[INFO] Processing row {}/{}...".format(i, dis_len)) topic_counts = list(Counter( row[args['topic']]).values()) # occurence counts topic_counts = np.asarray(topic_counts) # cast as numpy array for skbio dissolved.at[i, 'dominance'] = sk.dominance(topic_counts) dissolved.at[i, 'menhinick'] = sk.menhinick(topic_counts) dissolved.at[i, 'simpson'] = sk.simpson(topic_counts) # Select columns for output cols = ['geometry', 'dominance', 'menhinick', 'simpson'] output = dissolved[cols] # Save the output to pickle print('[INFO] - Saving to shapefile') output.to_file(args['output'], encoding='utf-8') # Print status print("[INFO] ... Done.")
# rename home detection column data = data.rename(columns={'home_unique_weeks': 'home_country'}) # filter only users who most likely live in Finland data = data[data['home_country'].str.contains('Finland')] # count language use without singletons print('[INFO] - Calculating language diversities...') data['ulangs'] = data['langs'].apply(lambda x: langcount(x)[0]) data['counts'] = data['langs'].apply(lambda x: langcount(x)[1]) data = data[data['counts'].map(lambda d: len(d)) > 0] # drop empties if any exist # calculate diversity metrics data['dominance'] = data['counts'].apply(lambda x: sk.dominance(x)) data['berger'] = data['counts'].apply(lambda x: sk.berger_parker_d(x)) data['menhinick'] = data['counts'].apply(sk.menhinick) data['simpson'] = data['counts'].apply(sk.simpson) data['singles'] = data['counts'].apply(sk.singles) data['shannon'] = data['counts'].apply( lambda x: np.exp(sk.shannon(x, base=np.e))) data['unique'] = data['counts'].apply(sk.observed_otus) # language counts to dictionary data['langdict'] = data.apply(lambda x: dict(zip(x['ulangs'], x['counts'])), axis=1) # calculate ellis et al diversity metrics data['divs'] = data['langdict'].apply(lang_entropy)
areas.at[i, colname4] = (int(lposts) / int(lpostsum)) * 100 # get dominant language from selected columns areas['propmax'] = areas[['fi_prop','en_prop','et_prop','ru_prop','sv_prop','es_prop','ja_prop','fr_prop','pt_prop','de_prop']].idxmax(axis=1) areas['mean_propmax'] = areas[['fi_mean_prop','en_mean_prop','et_mean_prop','ru_mean_prop','sv_mean_prop','es_mean_prop','ja_mean_prop','fr_mean_prop','pt_mean_prop','de_mean_prop']].idxmax(axis=1) areas['sum_propmax'] = areas[['fi_sum_prop','en_sum_prop','et_sum_prop','ru_sum_prop','sv_sum_prop','es_sum_prop','ja_sum_prop','fr_sum_prop','pt_sum_prop','de_sum_prop']].idxmax(axis=1) # get all language column names cols = list(areas[langlist].columns) # loop over areas print('[INFO] - Calculating diversity metrics per area..') for i, row in areas.iterrows(): # get counts of languages otus = list(row[cols]) # drop zeros otus = [i for i in otus if i != 0] # calculate diversity metrics areas.at[i, 'dominance'] = sk.dominance(otus) areas.at[i, 'berger'] = sk.berger_parker_d(otus) areas.at[i, 'menhinick'] = sk.menhinick(otus) areas.at[i, 'singletons'] = sk.singles(otus) areas.at[i, 'shannon'] = np.exp(sk.shannon(otus, base=np.e)) areas.at[i, 'unique'] = sk.observed_otus(otus) # save to file print('[INFO] - Saving output geopackage...') areas.to_file(args['output'], driver='GPKG') print('[INFO] - ... done!')