def main_show(): """ Use glumpy to launch a data set viewer. """ self = CIFAR10() Y = [m["label"] for m in self.meta] glumpy_viewer(img_array=self._pixels, arrays_to_print=[Y], window_shape=(32 * 4, 32 * 4))
def test_imgs(): root = '/home/bergstra/cvs/eccv12/eccv12/tests/data/' saved_paths = np.load(os.path.join(root, 'fg11_Xraw0-4.npy')) saved_processed_imgs = np.load(os.path.join(root, 'fg11_X0-4.npy')) imgs = plugins.get_images('float32', None) print saved_paths print saved_processed_imgs.shape assert saved_processed_imgs[0].shape == imgs[0].shape # the saved_preprocessed_imgs were designed to include only images # that appeared in view1, so it is normal that some images are omitted. assert np.allclose(saved_processed_imgs[0], imgs[0]) assert np.allclose(saved_processed_imgs[1], imgs[1]) assert np.allclose(saved_processed_imgs[2], imgs[3]) if 0: from skdata.utils.glviewer import glumpy_viewer, command, glumpy glumpy_viewer( #img_array=saved_processed_imgs, img_array=imgs, arrays_to_print=[saved_paths], cmap=glumpy.colormap.Grey)
def main_show(): """ Use glumpy to launch a data set viewer. """ self = KaggleFacialExpression() from skdata.utils.glviewer import glumpy_viewer glumpy_viewer(img_array=[m["pixels"] for m in self.meta], arrays_to_print=self.meta, window_shape=(48 * 4, 48 * 4))
def show_centroids(D): D = D.copy() for di in D: di -= di.min() di /= di.max() glumpy_viewer( img_array=D.astype('float32'), arrays_to_print=[], )
def main_show(): """ Use glumpy to launch a data set viewer. """ self = CIFAR10() Y = [m['label'] for m in self.meta] glumpy_viewer(img_array=self._pixels, arrays_to_print=[Y], window_shape=(32 * 4, 32 * 4))
def main_show(): """ Use glumpy to launch a data set viewer. """ self = KaggleFacialExpression() from skdata.utils.glviewer import glumpy_viewer glumpy_viewer(img_array=[m['pixels'] for m in self.meta], arrays_to_print=self.meta, window_shape=(48 * 4, 48 * 4))
def main_show(): """ Use glumpy to launch a data set viewer. """ self = MNIST() Y = [m['label'] for m in self.meta] glumpy_viewer(img_array=self.arrays['train_images'], arrays_to_print=[Y], cmap=glumpy.colormap.Grey, window_shape=(28 * 4, 28 * 4))
def main_show(): """ Use glumpy to launch a data set viewer. """ from skdata.utils.glviewer import glumpy_viewer self = CIFAR10() Y = [m['label'] for m in self.meta] glumpy_viewer( img_array=self._pixels, arrays_to_print=[Y], window_shape=(32 * 4, 32 * 4))
def main_show(): """ Use glumpy to launch a data set viewer. """ self = MNIST() Y = [m['label'] for m in self.meta] glumpy_viewer( img_array=self.arrays['train_images'], arrays_to_print=[Y], cmap=glumpy.colormap.Grey, window_shape=(28 * 4, 28 * 4) )
def show(): from skdata.utils.glviewer import glumpy_viewer vh = dataset.Calibrated(10) items = vh.meta[:10] images = np.asarray(map(vh.read_image, items)) images = images.astype('float32') images /= images.reshape(10, 1024 * 1536).max(axis=1)[:, None, None] images = 1.0 - images glumpy_viewer(img_array=images, arrays_to_print=[items], window_shape=vh.meta[0]['image_shape'])
def show(): from skdata.utils.glviewer import glumpy_viewer vh = dataset.Calibrated(10) items = vh.meta[:10] images = np.asarray(map(vh.read_image, items)) images = images.astype('float32') images /= images.reshape(10, 1024 * 1536).max(axis=1)[:, None, None] images = 1.0 - images glumpy_viewer( img_array=images, arrays_to_print=[items], window_shape=vh.meta[0]['image_shape'])
def show_patches(): N = 100 S = 128 from skdata.utils.glviewer import glumpy_viewer vh = dataset.Calibrated(10) patches = vh.raw_patches((N, S, S), items=vh.meta[:10]) patches = patches.astype('float32') patches /= patches.reshape(N, S * S).max(axis=1)[:, None, None] patches = 1.0 - patches SS = S while SS < 256: SS *= 2 glumpy_viewer(img_array=patches, arrays_to_print=[vh.meta], window_shape=(SS, SS))
def show_patches(): N = 100 S = 128 from skdata.utils.glviewer import glumpy_viewer vh = dataset.Calibrated(10) patches = vh.raw_patches((N, S, S), items=vh.meta[:10]) patches = patches.astype('float32') patches /= patches.reshape(N, S * S).max(axis=1)[:, None, None] patches = 1.0 - patches SS = S while SS < 256: SS *= 2 glumpy_viewer( img_array=patches, arrays_to_print=[vh.meta], window_shape=(SS, SS))
def main_show(): """ Use glumpy to launch a data set viewer. """ variant = sys.argv[2] if variant == 'original': obj = view.Original() cmap=None elif variant == 'aligned': obj = view.Aligned() cmap=glumpy.colormap.Grey elif variant == 'funneled': obj = view.Funneled() cmap=None else: raise ValueError(variant) glumpy_viewer( img_array=obj.image_pixels, arrays_to_print=[obj.image_pixels], cmap=cmap, window_shape=(250, 250), )
def main_show(): """ Use glumpy to launch a data set viewer. """ variant = sys.argv[2] if variant == 'original': obj = view.Original() cmap = None elif variant == 'aligned': obj = view.Aligned() cmap = glumpy.colormap.Grey elif variant == 'funneled': obj = view.Funneled() cmap = None else: raise ValueError(variant) glumpy_viewer( img_array=obj.image_pixels, arrays_to_print=[obj.image_pixels], cmap=cmap, window_shape=(250, 250), )