class TestPartitionofUnity(TestCase): """Test that elements form a partition of unity.""" elems = [ ElementLineP1(), ElementLineP2(), ElementTriP1(), ElementTriP2(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementTetP1(), ElementTetP2(), ElementHex1(), ElementHexS2(), ElementHex2(), ] def runTest(self): for elem in self.elems: if elem.dim == 1: y = np.array([[.15]]) elif elem.dim == 2: y = np.array([[.15], [.15]]) elif elem.dim == 3: y = np.array([[.15], [.15], [.15]]) out = 0. for i in range(elem.doflocs.shape[0]): out += elem.lbasis(y, i)[0][0] self.assertAlmostEqual(out, 1, msg='failed for {}'.format(elem))
class TestNodality(TestCase): """Test for Element.doflocs.""" elems = [ ElementLineP0(), ElementLineP1(), ElementLineP2(), ElementLinePp(1), ElementLinePp(3), ElementLineMini(), ElementTriP0(), ElementTriP1(), ElementTriP2(), ElementTriP3(), ElementTriP4(), ElementTriMini(), ElementQuad0(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementQuadP(1), ElementQuadP(3), ElementTetP0(), ElementTetP1(), ElementTetP2(), ElementTetMini(), ElementHex1(), ElementHexS2(), ElementHex2(), ElementTetCR(), ElementTetCCR(), ElementTriCR(), ElementTriCCR(), ElementWedge1(), ] def runTest(self): for e in self.elems: N = e.doflocs.shape[0] Ih = np.zeros((N, N)) for itr in range(N): Ih[itr] = e.lbasis(e.doflocs.T, itr)[0] # Remove nan-rows: test nodality only on non-nan doflocs. # # Some elements, such as ElementTriMini might have a combination # of nodal dofs and non-nodal dofs. # # Nodal dof is defined so that there exists a point where the # corresponding basis function is one, and other basis functions # are zero. Non-nodal dof does not satisfy this property. ix = np.isnan(np.sum(Ih, axis=1)) Nnan = np.sum(ix) ixs = np.nonzero(~ix)[0] Ih = Ih[ixs].T[ixs].T assert_allclose(Ih, np.eye(N - Nnan), atol=1e-13, err_msg="{}".format(type(e)))
def createBasis(self): m = MeshHex().refined(3) self.fbasis = FacetBasis(m, ElementHex2()) self.boundary_area = 6.000
class NormalVectorTestHex(NormalVectorTestTri): case = (MeshHex(), ElementHex1()) intorder = 3 class NormalVectorTestHexS2(NormalVectorTestTri): case = (MeshHex(), ElementHexS2()) intorder = 3 test_integrate_volume = False class NormalVectorTestHex2(NormalVectorTestTri): case = (MeshHex(), ElementHex2()) intorder = 3 test_integrate_volume = False @pytest.mark.parametrize("mtype,e,mtype2", [ (MeshTri, ElementTriP1(), None), (MeshTri, ElementTriArgyris(), None), (MeshHex, ElementHex1(), None), (MeshQuad, ElementQuad1(), None), (MeshQuad, ElementQuad2(), None), (MeshQuad, ElementQuad2(), MeshQuad2), (MeshTri, ElementTriP1(), MeshTri2), (MeshTet, ElementTetP1(), MeshTet2), (MeshHex, ElementHex1(), MeshHex2), ])
def create_basis(self, m): e = ElementHex2() return Basis(m, e)
class TestDerivatives(TestCase): """Test values of derivatives.""" elems = [ ElementLineP1(), ElementLineP2(), ElementLineMini(), ElementTriP1(), ElementTriP2(), ElementTriMini(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementTetP1(), ElementTetP2(), ElementTetMini(), ElementHex1(), ElementHexS2(), ElementHex2(), ] def runTest(self): for elem in self.elems: eps = 1e-6 for base in [0., .3, .6, .9]: if elem.dim == 1: y = np.array([[base, base + eps]]) elif elem.dim == 2: y = np.array([[base, base + eps, base, base], [base, base, base, base + eps]]) elif elem.dim == 3: y = np.array([[base, base + eps, base, base, base, base], [base, base, base, base + eps, base, base], [base, base, base, base, base, base + eps]]) i = 0 while True: try: out = elem.lbasis(y, i) except ValueError: break diff = (out[0][1] - out[0][0]) / eps errmsg = 'x-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][0][0], delta=1e-3, msg=errmsg.format(i, elem)) if elem.dim > 1: diff = (out[0][3] - out[0][2]) / eps errmsg = 'y-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][1][3], delta=1e-3, msg=errmsg.format(i, elem)) if elem.dim == 3: diff = (out[0][5] - out[0][4]) / eps errmsg = 'z-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][2][4], delta=1e-3, msg=errmsg.format(i, elem)) i += 1
(MeshTri, ElementTriP1(), ElementTriP1(), True), (MeshTri, ElementTriP2(), ElementTriP1(), True), (MeshTri, ElementTriP2(), ElementTriP2(), True), (MeshTri, ElementTriP2(), None, False), (MeshTri, ElementTriP2(), None, True), (MeshQuad, ElementQuad1(), ElementQuad0(), False), (MeshQuad, ElementQuad1(), ElementQuad1(), False), (MeshQuad, ElementQuad2(), ElementQuad2(), False), (MeshQuad, ElementQuad1(), ElementQuad0(), True), (MeshQuad, ElementQuad1(), ElementQuad1(), True), (MeshQuad, ElementQuad2(), ElementQuad2(), True), (MeshTet, ElementTetP1(), ElementTetP0(), False), (MeshTet, ElementTetP2(), ElementTetP2(), False), (MeshHex, ElementHex1(), ElementHex0(), False), (MeshHex, ElementHex1(), ElementHex1(), False), (MeshHex, ElementHex2(), ElementHex2(), False), ], ) def test_trace(mtype, e1, e2, flat): m = mtype().refined(3) # use the boundary where last coordinate is zero basis = FacetBasis(m, e1, facets=m.facets_satisfying(lambda x: x[-1] == 0.0)) xfun = projection(lambda x: x[0], CellBasis(m, e1)) nbasis, y = basis.trace(xfun, lambda p: p[0] if flat else p[:-1], target_elem=e2) @Functional def integ(w): return w.y
class NormalVectorTestHex(NormalVectorTestTri): case = (MeshHex(), ElementHex1()) intorder = 3 class NormalVectorTestHexS2(NormalVectorTestTri): case = (MeshHex(), ElementHexS2()) intorder = 3 test_integrate_volume = False class NormalVectorTestHex2(NormalVectorTestTri): case = (MeshHex(), ElementHex2()) intorder = 3 test_integrate_volume = False class EvaluateFunctional(unittest.TestCase): def runTest(self): m = MeshQuad().refined(3) e = ElementQuad1() basis = InteriorBasis(m, e) @Functional def x_squared(w): return w.x[0]**2 y = asm(x_squared, basis)
(MeshQuad().refined(), ElementQuad1(), ElementQuadDG), ]) def test_dg_element(m, e, edg): edg = edg(e) @Functional def square(w): return w['random']**2 basis = InteriorBasis(m, e) basisdg = InteriorBasis(m, edg) assert_allclose( square.assemble(basis, random=basis.interpolate(basis.zeros() + 1)), square.assemble(basisdg, random=basisdg.interpolate(basisdg.zeros() + 1)), ) @pytest.mark.parametrize("e,edg", [ (ElementTriP1(), ElementTriDG), (ElementTetP2(), ElementTetDG), (ElementTriArgyris(), ElementTriDG), (ElementQuad1(), ElementQuadDG), (ElementQuadP(4), ElementQuadDG), (ElementHex2(), ElementHexDG), ]) def test_initialize_dg_composite_elements(e, edg): E = edg(e) * e
@pytest.mark.parametrize("mtype,e1,e2", [ (MeshTri, ElementTriP1(), ElementTriP0()), (MeshTri, ElementTriP1(), ElementTriP1()), (MeshTri, ElementTriP2(), ElementTriP1()), (MeshTri, ElementTriP2(), ElementTriP2()), (MeshTri, ElementTriP2(), None), (MeshQuad, ElementQuad1(), ElementQuad0()), (MeshQuad, ElementQuad1(), ElementQuad1()), (MeshQuad, ElementQuad2(), ElementQuad2()), (MeshTet, ElementTetP1(), ElementTetP0()), (MeshTet, ElementTetP2(), ElementTetP2()), (MeshHex, ElementHex1(), ElementHex0()), (MeshHex, ElementHex1(), ElementHex1()), (MeshHex, ElementHex2(), ElementHex2()), ]) def test_trace(mtype, e1, e2): m = mtype().refined(3) # use the boundary where last coordinate is zero basis = FacetBasis( m, e1, facets=m.facets_satisfying(lambda x: x[x.shape[0] - 1] == 0.0)) xfun = projection(lambda x: x[0], InteriorBasis(m, e1)) nbasis, y = basis.trace(xfun, lambda p: p[0:(p.shape[0] - 1)], target_elem=e2) @Functional def integ(w):
@pytest.mark.parametrize("mtype,e1,e2", [ (MeshTri, ElementTriP1(), ElementLineP0()), (MeshTri, ElementTriP1(), ElementLineP1()), (MeshTri, ElementTriP2(), ElementLineP1()), (MeshTri, ElementTriP2(), ElementLineP2()), (MeshTri, ElementTriP2(), None), (MeshQuad, ElementQuad1(), ElementLineP0()), (MeshQuad, ElementQuad1(), ElementLineP1()), (MeshQuad, ElementQuad2(), ElementLineP2()), (MeshTet, ElementTetP1(), ElementTriP0()), (MeshTet, ElementTetP2(), ElementTriP2()), (MeshHex, ElementHex1(), ElementQuad0()), (MeshHex, ElementHex1(), ElementQuad1()), (MeshHex, ElementHex2(), ElementQuad2()), ]) def test_trace(mtype, e1, e2): m = mtype().refined(3) # use the boundary where last coordinate is zero basis = FacetBasis( m, e1, facets=m.facets_satisfying(lambda x: x[x.shape[0] - 1] == 0.0)) xfun = project(lambda x: x[0], basis_to=InteriorBasis(m, e1)) nbasis, y = basis.trace(xfun, lambda p: p[0:(p.shape[0] - 1)], target_elem=e2) @Functional def integ(w):