def test_with_X_nan(self, boston_X, boston_y): boston_X_nan = boston_X.copy() index = np.random.choice(boston_X_nan.size, 100, replace=False) boston_X_nan.ravel()[index] = np.nan assert np.sum(np.isnan(boston_X_nan)) == 100 forest = GRFForestRegressor() forest.fit(boston_X_nan, boston_y) pred = forest.predict(boston_X_nan) assert len(pred) == boston_X_nan.shape[0]
def test_predict(self, boston_X, boston_y): forest = GRFForestRegressor() forest.fit(boston_X, boston_y) pred = forest.predict(boston_X) assert len(pred) == boston_X.shape[0]