コード例 #1
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_mtry(self, boston_X, boston_y, mtry):
     tree = GRFTreeRegressor(mtry=mtry)
     tree.fit(boston_X, boston_y)
     if mtry is not None:
         assert tree.mtry_ == mtry
     else:
         assert tree.mtry_ == 6
コード例 #2
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_apply(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     leaves = tree.apply(boston_X)
     assert isinstance(leaves, np.ndarray)
     assert np.all(leaves > 0)
     assert len(leaves) == len(boston_X)
コード例 #3
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_with_X_nan(self, boston_X, boston_y):
     boston_X_nan = boston_X.copy()
     index = np.random.choice(boston_X_nan.size, 100, replace=False)
     boston_X_nan.ravel()[index] = np.nan
     assert np.sum(np.isnan(boston_X_nan)) == 100
     tree = GRFTreeRegressor()
     tree.fit(boston_X_nan, boston_y)
     pred = tree.predict(boston_X_nan)
     assert len(pred) == boston_X_nan.shape[0]
コード例 #4
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_fit(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     with pytest.raises(NotFittedError):
         check_is_fitted(tree)
     tree.fit(boston_X, boston_y)
     check_is_fitted(tree)
     assert hasattr(tree, "grf_forest_")
     assert hasattr(tree, "mtry_")
     assert tree.grf_forest_["num_trees"] == 1
     assert tree.criterion == "mse"
コード例 #5
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_serialize(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     # not fitted
     tf = tempfile.TemporaryFile()
     pickle.dump(tree, tf)
     tf.seek(0)
     tree = pickle.load(tf)
     tree.fit(boston_X, boston_y)
     # fitted
     tf = tempfile.TemporaryFile()
     pickle.dump(tree, tf)
     tf.seek(0)
     new_tree = pickle.load(tf)
     pred = new_tree.predict(boston_X)
     assert len(pred) == boston_X.shape[0]
コード例 #6
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_tree_interface(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     # access attributes the way we would expect to in sklearn
     tree_ = tree.tree_
     children_left = tree_.children_left
     children_right = tree_.children_right
     children_default = tree_.children_default
     feature = tree_.feature
     threshold = tree_.threshold
     max_depth = tree_.max_depth
     n_node_samples = tree_.n_node_samples
     weighted_n_node_samples = tree_.weighted_n_node_samples
     node_count = tree_.node_count
     capacity = tree_.capacity
     n_outputs = tree_.n_outputs
     n_classes = tree_.n_classes
     value = tree_.value
コード例 #7
0
    def get_estimator(self, idx):
        """Extract a single estimator tree from the forest.

        :param int idx: The index of the tree to extract.
        """
        check_is_fitted(self)
        if not self.enable_tree_details:
            raise ValueError(
                "enable_tree_details must be True prior to training")
        return GRFTreeRegressor.from_forest(self, idx=idx)
コード例 #8
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_alpha(self, boston_X, boston_y, alpha):
     tree = GRFTreeRegressor(alpha=alpha)
     if alpha <= 0 or alpha >= 0.25:
         with pytest.raises(ValueError):
             tree.fit(boston_X, boston_y)
     else:
         tree.fit(boston_X, boston_y)
コード例 #9
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_sample_fraction(self, boston_X, boston_y,
                          sample_fraction):  # and ci_group_size
     tree = GRFTreeRegressor(sample_fraction=sample_fraction)
     if sample_fraction <= 0 or sample_fraction > 1:
         with pytest.raises(ValueError):
             tree.fit(boston_X, boston_y)
     else:
         tree.fit(boston_X, boston_y)
コード例 #10
0
 def estimators_(self):
     try:
         check_is_fitted(self)
     except NotFittedError:
         raise AttributeError(
             f"{self.__class__.__name__} object has no attribute 'estimators_'"
         ) from None
     if not self.enable_tree_details:
         raise ValueError(
             "enable_tree_details must be True prior to training")
     return [
         GRFTreeRegressor.from_forest(self, idx=idx)
         for idx in range(self.n_estimators)
     ]
コード例 #11
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_honesty_fraction(self, boston_X, boston_y, honesty_fraction):
     tree = GRFTreeRegressor(honesty=True,
                             honesty_fraction=honesty_fraction,
                             honesty_prune_leaves=True)
     if honesty_fraction <= 0 or honesty_fraction >= 1:
         with pytest.raises(RuntimeError):
             tree.fit(boston_X, boston_y)
     else:
         tree.fit(boston_X, boston_y)
コード例 #12
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
    def test_equalize_cluster_weights(self, boston_X, boston_y, boston_cluster,
                                      equalize_cluster_weights):
        tree = GRFTreeRegressor(
            equalize_cluster_weights=equalize_cluster_weights)
        tree.fit(boston_X, boston_y, cluster=boston_cluster)
        if equalize_cluster_weights:
            assert tree.samples_per_cluster_ == 20
        else:
            assert tree.samples_per_cluster_ == boston_y.shape[0] - 20

        if equalize_cluster_weights:
            with pytest.raises(ValueError):
                tree.fit(boston_X,
                         boston_y,
                         cluster=boston_cluster,
                         sample_weight=boston_y)

        tree.fit(boston_X, boston_y, cluster=None)
        assert tree.samples_per_cluster_ == 0
コード例 #13
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_init(self):
     _ = GRFTreeRegressor()
コード例 #14
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_clone(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     clone(tree)
コード例 #15
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_honesty(self, boston_X, boston_y, honesty):
     tree = GRFTreeRegressor(honesty=honesty)
     tree.fit(boston_X, boston_y)
コード例 #16
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_predict_oob(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y, compute_oob_predictions=True)
     pred = np.atleast_1d(
         np.squeeze(np.array(tree.grf_forest_["predictions"])))
     assert len(pred) == boston_X.shape[0]
コード例 #17
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_predict(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     pred = tree.predict(boston_X)
     assert len(pred) == boston_X.shape[0]
コード例 #18
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_honesty_prune_leaves(self, boston_X, boston_y,
                               honesty_prune_leaves):
     tree = GRFTreeRegressor(honesty=True,
                             honesty_prune_leaves=honesty_prune_leaves)
     tree.fit(boston_X, boston_y)
コード例 #19
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_check_estimator(self):
     check_estimator(GRFTreeRegressor())
コード例 #20
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_decision_path(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     paths = tree.decision_path(boston_X)
     assert isinstance(paths, csr_matrix)
     assert paths.shape[0] == len(boston_X)
コード例 #21
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_from_forest(self, boston_X, boston_y):
     forest = GRFForestRegressor()
     forest.fit(boston_X, boston_y)
     tree = GRFTreeRegressor.from_forest(forest=forest, idx=0)
     tree.predict(boston_X)
コード例 #22
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_get_n_leaves(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     leaves = tree.get_n_leaves()
     assert isinstance(leaves, int)
     assert np.all(leaves > 0)
コード例 #23
0
ファイル: test_regressor.py プロジェクト: crflynn/skgrf
 def test_get_depth(self, boston_X, boston_y):
     tree = GRFTreeRegressor()
     tree.fit(boston_X, boston_y)
     depth = tree.get_depth()
     assert isinstance(depth, int)
     assert depth > 0