コード例 #1
0
 def test_rgb_lch_roundtrip(self):
     rgb = img_as_float(self.img_rgb)
     lab = rgb2lab(rgb)
     lch = lab2lch(lab)
     lab2 = lch2lab(lch)
     rgb2 = lab2rgb(lab2)
     assert_array_almost_equal(rgb, rgb2)
コード例 #2
0
def test_apply_parallel_lazy():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)
    d = da.from_array(a, chunks=(6, 6))

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'},
                             compute=False)

    # apply the filter on a Dask Array
    result2 = apply_parallel(threshold_local, d, depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'},
                             compute=False)

    assert isinstance(result1, da.Array)

    assert_array_almost_equal(result1.compute(), expected1)

    assert isinstance(result2, da.Array)

    assert_array_almost_equal(result2.compute(), expected1)
コード例 #3
0
ファイル: test_peak.py プロジェクト: Cadair/scikit-image
 def test_absolute_threshold(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1, 1] = 10
     image[3, 3] = 20
     peaks = peak.peak_local_max(image, min_distance=1, threshold_abs=10)
     assert len(peaks) == 1
     assert_array_almost_equal(peaks, [(3, 3)])
コード例 #4
0
def test_cross_correlate_masked_over_axes():
    """Masked normalized cross-correlation over axes should be
    equivalent to a loop over non-transform axes."""
    # See random number generator for reproducible results
    np.random.seed(23)

    arr1 = np.random.random((8, 8, 5))
    arr2 = np.random.random((8, 8, 5))

    m1 = np.random.choice([True, False], arr1.shape)
    m2 = np.random.choice([True, False], arr2.shape)

    # Loop over last axis
    with_loop = np.empty_like(arr1, dtype=np.complex)
    for index in range(arr1.shape[-1]):
        with_loop[:, :, index] = cross_correlate_masked(arr1[:, :, index],
                                                        arr2[:, :, index],
                                                        m1[:, :, index],
                                                        m2[:, :, index],
                                                        axes=(0, 1), 
                                                        mode='same')

    over_axes = cross_correlate_masked(
        arr1, arr2, m1, m2, axes=(0, 1), mode='same')

    testing.assert_array_almost_equal(with_loop, over_axes)
コード例 #5
0
 def test_yuv_roundtrip(self):
     img_rgb = img_as_float(self.img_rgb)[::16, ::16]
     assert_array_almost_equal(yuv2rgb(rgb2yuv(img_rgb)), img_rgb)
     assert_array_almost_equal(yiq2rgb(rgb2yiq(img_rgb)), img_rgb)
     assert_array_almost_equal(ypbpr2rgb(rgb2ypbpr(img_rgb)), img_rgb)
     assert_array_almost_equal(ycbcr2rgb(rgb2ycbcr(img_rgb)), img_rgb)
     assert_array_almost_equal(ydbdr2rgb(rgb2ydbdr(img_rgb)), img_rgb)
コード例 #6
0
ファイル: test_edges.py プロジェクト: Cadair/scikit-image
def test_roberts_diagonal2():
    """Roberts' filter on a diagonal edge should be a diagonal line."""
    image = np.rot90(np.tri(10, 10, 0), 3)
    expected = ~np.rot90(np.tri(10, 10, -1).astype(bool) |
                         np.tri(10, 10, -2).astype(bool).transpose())
    expected = _mask_filter_result(expected, None)
    result = filters.roberts(image).astype(bool)
    assert_array_almost_equal(result, expected)
コード例 #7
0
ファイル: test_imageio.py プロジェクト: jmetz/scikit-image
    def roundtrip(self, x, scaling=1):
        f = NamedTemporaryFile(suffix='.png')
        fname = f.name
        f.close()
        imsave(fname, x)
        y = imread(fname)

        assert_array_almost_equal((x * scaling).astype(np.int32), y)
コード例 #8
0
def test_apply_parallel_wrap():
    def wrapped(arr):
        return gaussian(arr, 1, mode='wrap')
    a = np.arange(144).reshape(12, 12).astype(float)
    expected = gaussian(a, 1, mode='wrap')
    result = apply_parallel(wrapped, a, chunks=(6, 6), depth=5, mode='wrap')

    assert_array_almost_equal(result, expected)
コード例 #9
0
def test_offset_not_none():
    """Test reconstruction with valid offset parameter"""
    seed = np.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0])
    mask = np.array([0, 8, 6, 8, 8, 8, 8, 4, 4, 0])
    expected = np.array([0, 3, 6, 6, 6, 6, 6, 4, 4, 0])

    assert_array_almost_equal(
        reconstruction(seed, mask, method='dilation',
                       selem=np.ones(3), offset=np.array([0])), expected)
コード例 #10
0
def test_weighted_moments_normalized():
    wnu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE
                      )[0].weighted_moments_normalized.T  # test used x/y coord
    ref = np.array(
        [[       np.nan,        np.nan,  0.0873590903, -0.0161217406],
         [       np.nan, -0.0160405109, -0.0031421072, -0.0031376984],
         [  0.230146783,  0.0457932622,  0.0165315478,  0.0043903193],
         [-0.0162529732, -0.0104598869, -0.0028544152, -0.0011057191]]
    )
    assert_array_almost_equal(wnu, ref)
コード例 #11
0
def test_no_chunks():
    a = np.ones(1 * 4 * 8 * 9).reshape(1, 4, 8, 9)

    def add_42(arr):
        return arr + 42

    expected = add_42(a)
    result = apply_parallel(add_42, a)

    assert_array_almost_equal(result, expected)
コード例 #12
0
def test_weighted_moments_hu():
    whu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE
                      )[0].weighted_moments_hu
    ref = np.array([
        3.1750587329e-01,
        2.1417517159e-02,
        2.3609322038e-02,
        1.2565683360e-03,
        8.3014209421e-07,
        -3.5073773473e-05,
        -6.7936409056e-06
    ])
    assert_array_almost_equal(whu, ref)
コード例 #13
0
def test_moments_hu():
    hu = regionprops(SAMPLE)[0].moments_hu
    ref = np.array([
         3.27117627e-01,
         2.63869194e-02,
         2.35390060e-02,
         1.23151193e-03,
         1.38882330e-06,
         -2.72586158e-05,
         -6.48350653e-06
    ])
    # bug in OpenCV caused in Central Moments calculation?
    assert_array_almost_equal(hu, ref)
コード例 #14
0
def test_weighted_moments():
    wm = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE
                     )[0].weighted_moments.T  # test used x/y coords
    ref = np.array(
        [[  7.4000000000e+01, 4.1000000000e+02, 2.7500000000e+03,
            1.9778000000e+04],
         [  6.9900000000e+02, 3.7850000000e+03, 2.4855000000e+04,
            1.7500100000e+05],
         [  7.8630000000e+03, 4.4063000000e+04, 2.9347700000e+05,
            2.0810510000e+06],
         [  9.7317000000e+04, 5.7256700000e+05, 3.9007170000e+06,
            2.8078871000e+07]]
    )
    assert_array_almost_equal(wm, ref)
コード例 #15
0
def test_weighted_moments_central():
    wmu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE
                      )[0].weighted_moments_central.T  # test used x/y coords
    ref = np.array(
        [[  7.4000000000e+01, -2.1316282073e-13,  4.7837837838e+02,
            -7.5943608473e+02],
         [  3.7303493627e-14, -8.7837837838e+01, -1.4801314828e+02,
            -1.2714707125e+03],
         [  1.2602837838e+03,  2.1571526662e+03,  6.6989799420e+03,
             1.5304076361e+04],
         [ -7.6561796932e+02, -4.2385971907e+03, -9.9501164076e+03,
            -3.3156729271e+04]]
    )
    np.set_printoptions(precision=10)
    assert_array_almost_equal(wmu, ref)
コード例 #16
0
def test_weighted_moments_central():
    wmu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE
                      )[0].weighted_moments_central.T  # test used x/y coords
    ref = np.array(
        [[  7.4000000000e+01, -2.1316282073e-13,  4.7837837838e+02,
            -7.5943608473e+02],
         [  3.7303493627e-14, -8.7837837838e+01, -1.4801314828e+02,
            -1.2714707125e+03],
         [  1.2602837838e+03,  2.1571526662e+03,  6.6989799420e+03,
             1.5304076361e+04],
         [ -7.6561796932e+02, -4.2385971907e+03, -9.9501164076e+03,
            -3.3156729271e+04]]
    )
    np.set_printoptions(precision=10)
    assert_array_almost_equal(wmu, ref)
コード例 #17
0
def test_apply_parallel_rgb(depth, chunks, dtype):
    cat = data.chelsea().astype(dtype) / 255.

    func = color.rgb2ycbcr
    cat_ycbcr_expected = func(cat)
    cat_ycbcr = apply_parallel(func,
                               cat,
                               chunks=chunks,
                               depth=depth,
                               dtype=dtype,
                               multichannel=True)

    assert_equal(cat_ycbcr.dtype, cat.dtype)

    assert_array_almost_equal(cat_ycbcr_expected, cat_ycbcr)
コード例 #18
0
def test_gaussian_mssim_and_gradient_vs_Matlab():
    # comparison to Matlab implementation of N. Avanaki:
    # https://ece.uwaterloo.ca/~nnikvand/Coderep/SHINE%20TOOLBOX/SHINEtoolbox/
    # Note: final line of ssim_sens.m was modified to discard image borders

    ref = np.load(os.path.join(data_dir, 'mssim_matlab_output.npz'))
    grad_matlab = ref['grad_matlab']
    mssim_matlab = float(ref['mssim_matlab'])

    mssim, grad = ssim(cam, cam_noisy, gaussian_weights=True, gradient=True,
                       use_sample_covariance=False)

    assert_almost_equal(mssim, mssim_matlab, decimal=3)

    # check almost equal aside from object borders
    assert_array_almost_equal(grad_matlab[5:-5], grad[5:-5])
コード例 #19
0
def test_apply_parallel_nearest():
    def wrapped(arr):
        return gaussian(arr, 1, mode='nearest')

    a = np.arange(144).reshape(12, 12).astype(float)
    expected = gaussian(a, 1, mode='nearest')
    result = apply_parallel(wrapped,
                            a,
                            chunks=(6, 6),
                            depth={
                                0: 5,
                                1: 5
                            },
                            mode='nearest')

    assert_array_almost_equal(result, expected)
コード例 #20
0
 def test_rgb2luv_brucelindbloom(self):
     """
     Test the RGB->Lab conversion by comparing to the calculator on the
     authoritative Bruce Lindbloom
     [website](http://brucelindbloom.com/index.html?ColorCalculator.html).
     """
     # Obtained with D65 white point, sRGB model and gamma
     gt_for_colbars = np.array([[100, 0, 0], [97.1393, 7.7056, 106.7866],
                                [91.1132, -70.4773, -15.2042],
                                [87.7347, -83.0776, 107.3985],
                                [60.3242, 84.0714, -108.6834],
                                [53.2408, 175.0151, 37.7564],
                                [32.2970, -9.4054, -130.3423], [0, 0, 0]]).T
     gt_array = np.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2)
     assert_array_almost_equal(rgb2luv(self.colbars_array),
                               gt_array,
                               decimal=2)
コード例 #21
0
 def test_rgb2lab_brucelindbloom(self):
     """
     Test the RGB->Lab conversion by comparing to the calculator on the
     authoritative Bruce Lindbloom
     [website](http://brucelindbloom.com/index.html?ColorCalculator.html).
     """
     # Obtained with D65 white point, sRGB model and gamma
     gt_for_colbars = np.array([[100, 0, 0], [97.1393, -21.5537, 94.4780],
                                [91.1132, -48.0875, -14.1312],
                                [87.7347, -86.1827, 83.1793],
                                [60.3242, 98.2343, -60.8249],
                                [53.2408, 80.0925, 67.2032],
                                [32.2970, 79.1875, -107.8602], [0, 0, 0]]).T
     gt_array = np.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2)
     assert_array_almost_equal(rgb2lab(self.colbars_array),
                               gt_array,
                               decimal=2)
コード例 #22
0
ファイル: test_rank.py プロジェクト: tthomas88/scikit-image
 def check():
     expected = self.refs_3d[filter]
     if outdt is not None:
         out = np.zeros_like(expected, dtype=outdt)
     else:
         out = None
     result = getattr(rank, filter)(self.volume,
                                    self.footprint_3d,
                                    out=out)
     if outdt is not None:
         # Avoid rounding issues comparing to expected result
         if filter == 'sum':
             # sum test data seems to be 8-bit disguised as 16-bit
             datadt = np.uint8
         else:
             datadt = expected.dtype
         result = result.astype(datadt)
     assert_array_almost_equal(expected, result)
コード例 #23
0
 def test_rgb2lab_brucelindbloom(self):
     """
     Test the RGB->Lab conversion by comparing to the calculator on the
     authoritative Bruce Lindbloom
     [website](http://brucelindbloom.com/index.html?ColorCalculator.html).
     """
     # Obtained with D65 white point, sRGB model and gamma
     gt_for_colbars = np.array([
         [100,0,0],
         [97.1393, -21.5537, 94.4780],
         [91.1132, -48.0875, -14.1312],
         [87.7347, -86.1827, 83.1793],
         [60.3242, 98.2343, -60.8249],
         [53.2408, 80.0925, 67.2032],
         [32.2970, 79.1875, -107.8602],
         [0,0,0]]).T
     gt_array = np.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2)
     assert_array_almost_equal(rgb2lab(self.colbars_array), gt_array, decimal=2)
コード例 #24
0
 def test_rgb2luv_brucelindbloom(self):
     """
     Test the RGB->Lab conversion by comparing to the calculator on the
     authoritative Bruce Lindbloom
     [website](http://brucelindbloom.com/index.html?ColorCalculator.html).
     """
     # Obtained with D65 white point, sRGB model and gamma
     gt_for_colbars = np.array([
         [100, 0, 0],
         [97.1393, 7.7056, 106.7866],
         [91.1132, -70.4773, -15.2042],
         [87.7347, -83.0776, 107.3985],
         [60.3242, 84.0714, -108.6834],
         [53.2408, 175.0151, 37.7564],
         [32.2970, -9.4054, -130.3423],
         [0, 0, 0]]).T
     gt_array = np.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2)
     assert_array_almost_equal(rgb2luv(self.colbars_array),
                               gt_array, decimal=2)
コード例 #25
0
def test_apply_parallel():
    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)
コード例 #26
0
def test_overlay_custom_saturation():
    rgb_img = np.random.uniform(size=(10, 10, 3))
    labels = np.ones((10, 10), dtype=np.int64)
    labels[5:, 5:] = 2
    labels[:3, :3] = 0
    alpha = 0.3
    saturation = 0.3
    rgb = label2rgb(labels,
                    image=rgb_img,
                    alpha=alpha,
                    bg_label=0,
                    saturation=saturation)

    hsv = rgb2hsv(rgb_img)
    hsv[..., 1] *= saturation
    saturaded_img = hsv2rgb(hsv)

    # check that rgb part of input image is saturated, where labels=0
    assert_array_almost_equal(saturaded_img[:3, :3] * (1 - alpha), rgb[:3, :3])
コード例 #27
0
 def check():
     expected = self.refs_3d[filter]
     if outdt is not None:
         out = np.zeros_like(expected, dtype=outdt)
     else:
         out = None
     result = getattr(rank, filter)(self.volume,
                                    self.footprint_3d,
                                    out=out)
     if outdt is not None:
         # Avoid rounding issues comparing to expected result
         if filter == 'sum':
             # sum test data seems to be 8-bit disguised as 16-bit
             datadt = np.uint8
         else:
             datadt = expected.dtype
         # Take modulus first to avoid undefined behavior for
         # float->uint8 conversions.
         result = np.mod(result, 256.0).astype(datadt)
     assert_array_almost_equal(expected, result)
コード例 #28
0
    def test_lab2xyz(self):
        assert_array_almost_equal(lab2xyz(self.lab_array),
                                  self.xyz_array,
                                  decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["d50", "d55", "d65", "d75"]:
            for obs in ["2", "10"]:
                fname = "lab_array_{0}_{1}.npy".format(I, obs)
                lab_array_I_obs = np.load(
                    os.path.join(os.path.dirname(__file__), 'data', fname))
                assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, obs),
                                          self.xyz_array,
                                          decimal=3)
        for I in ["a", "e"]:
            fname = "lab_array_{0}_2.npy".format(I, obs)
            lab_array_I_obs = np.load(
                os.path.join(os.path.dirname(__file__), 'data', fname))
            assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, "2"),
                                      self.xyz_array,
                                      decimal=3)

        # And we include a call to test the exception handling in the code.
        try:
            xs = lab2xyz(lab_array_I_obs, "NaI", "2")  # Not an illuminant
        except ValueError:
            pass

        try:
            xs = lab2xyz(lab_array_I_obs, "d50", "42")  # Not a degree
        except ValueError:
            pass
コード例 #29
0
def test_apply_parallel():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)

    expected3 = gaussian(a, 1, mode='reflect')
    result3 = apply_parallel(
        wrapped_gauss, da.from_array(a, chunks=(6, 6)), depth=5, compute=True
    )

    assert isinstance(result3, np.ndarray)
    assert_array_almost_equal(result3, expected3)
コード例 #30
0
    def test_lab2xyz(self):
        assert_array_almost_equal(lab2xyz(self.lab_array),
                                  self.xyz_array,
                                  decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["A", "B", "C", "d50", "d55", "d65"]:
            I = I.lower()
            for obs in ["2", "10", "R"]:
                obs = obs.lower()
                fname = "color/tests/data/lab_array_{0}_{1}.npy".format(I, obs)
                lab_array_I_obs = np.load(fetch(fname))
                assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, obs),
                                          self.xyz_array,
                                          decimal=3)
        for I in ["d75", "e"]:
            fname = "color/tests/data/lab_array_{0}_2.npy".format(I)
            lab_array_I_obs = np.load(fetch(fname))
            assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, "2"),
                                      self.xyz_array,
                                      decimal=3)

        # And we include a call to test the exception handling in the code.
        try:
            xs = lab2xyz(lab_array_I_obs, "NaI", "2")  # Not an illuminant
        except ValueError:
            pass

        try:
            xs = lab2xyz(lab_array_I_obs, "d50", "42")  # Not a degree
        except ValueError:
            pass
コード例 #31
0
ファイル: test_apply_parallel.py プロジェクト: Aakalpa/Thrift
def test_apply_parallel():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local,
                             a,
                             chunks=(6, 6),
                             depth=5,
                             extra_arguments=(3, ),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)

    expected3 = gaussian(a, 1, mode='reflect')
    result3 = apply_parallel(wrapped_gauss,
                             da.from_array(a, chunks=(6, 6)),
                             depth=5,
                             compute=True)

    assert isinstance(result3, np.ndarray)
    assert_array_almost_equal(result3, expected3)
コード例 #32
0
    def test_lab2xyz(self):
        assert_array_almost_equal(lab2xyz(self.lab_array),
                                  self.xyz_array, decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["d50", "d55", "d65", "d75"]:
            for obs in ["2", "10"]:
                fname = "lab_array_{0}_{1}.npy".format(I, obs)
                lab_array_I_obs = np.load(
                    os.path.join(os.path.dirname(__file__), 'data', fname))
                assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, obs),
                                          self.xyz_array, decimal=3)
        for I in ["a", "e"]:
            fname = "lab_array_{0}_2.npy".format(I, obs)
            lab_array_I_obs = np.load(
                os.path.join(os.path.dirname(__file__), 'data', fname))
            assert_array_almost_equal(lab2xyz(lab_array_I_obs, I, "2"),
                                      self.xyz_array, decimal=3)

        # And we include a call to test the exception handling in the code.
        try:
            xs = lab2xyz(lab_array_I_obs, "NaI", "2")   # Not an illuminant
        except ValueError:
            pass

        try:
            xs = lab2xyz(lab_array_I_obs, "d50", "42")   # Not a degree
        except ValueError:
            pass
コード例 #33
0
def test_alpha():
    image = np.random.uniform(size=(3, 3))
    label = np.random.randint(0, 9, size=(3, 3))
    # If we set `alpha = 0`, then rgb should match image exactly.
    rgb = label2rgb(label, image=image, alpha=0, image_alpha=1, bg_label=-1)
    assert_array_almost_equal(rgb[..., 0], image)
    assert_array_almost_equal(rgb[..., 1], image)
    assert_array_almost_equal(rgb[..., 2], image)
コード例 #34
0
def test_two_image_peaks():
    """Test reconstruction with two peak pixels isolated by the mask"""
    image = np.array([[1, 1, 1, 1, 1, 1, 1, 1],
                      [1, 2, 1, 1, 1, 1, 1, 1],
                      [1, 1, 1, 1, 1, 1, 1, 1],
                      [1, 1, 1, 1, 1, 1, 1, 1],
                      [1, 1, 1, 1, 1, 1, 3, 1],
                      [1, 1, 1, 1, 1, 1, 1, 1]])

    mask = np.array([[4, 4, 4, 1, 1, 1, 1, 1],
                     [4, 4, 4, 1, 1, 1, 1, 1],
                     [4, 4, 4, 1, 1, 1, 1, 1],
                     [1, 1, 1, 1, 1, 4, 4, 4],
                     [1, 1, 1, 1, 1, 4, 4, 4],
                     [1, 1, 1, 1, 1, 4, 4, 4]])

    expected = np.array([[2, 2, 2, 1, 1, 1, 1, 1],
                         [2, 2, 2, 1, 1, 1, 1, 1],
                         [2, 2, 2, 1, 1, 1, 1, 1],
                         [1, 1, 1, 1, 1, 3, 3, 3],
                         [1, 1, 1, 1, 1, 3, 3, 3],
                         [1, 1, 1, 1, 1, 3, 3, 3]])
    assert_array_almost_equal(reconstruction(image, mask), expected)
コード例 #35
0
 def check():
     expected = self.refs[filter]
     if outdt is not None:
         out = np.zeros_like(expected, dtype=outdt)
     else:
         out = None
     result = getattr(rank, filter)(self.image, self.footprint, out=out)
     if filter == "entropy":
         # There may be some arch dependent rounding errors
         # See the discussions in
         # https://github.com/scikit-image/scikit-image/issues/3091
         # https://github.com/scikit-image/scikit-image/issues/2528
         if outdt is not None:
             # Adjust expected precision
             expected = expected.astype(outdt)
         assert_allclose(expected, result, atol=0, rtol=1E-15)
     elif filter == "otsu":
         # OTSU May also have some optimization dependent failures
         # See the discussions in
         # https://github.com/scikit-image/scikit-image/issues/3091
         # Pixel 3, 5 was found to be problematic. It can take either
         # a value of 41 or 81 depending on the specific optimizations
         # used.
         assert result[3, 5] in [41, 81]
         result[3, 5] = 81
         # Pixel [19, 18] is also found to be problematic for the same
         # reason.
         assert result[19, 18] in [141, 172]
         result[19, 18] = 172
         assert_array_almost_equal(expected, result)
     else:
         if outdt is not None:
             # Avoid rounding issues comparing to expected result.
             # Take modulus first to avoid undefined behavior for
             # float->uint8 conversions.
             result = np.mod(result, 256.0).astype(expected.dtype)
         assert_array_almost_equal(expected, result)
コード例 #36
0
def test_bbox():
    bbox = regionprops(SAMPLE)[0].bbox
    assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]))

    SAMPLE_mod = SAMPLE.copy()
    SAMPLE_mod[:, -1] = 0
    bbox = regionprops(SAMPLE_mod)[0].bbox
    assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]-1))

    bbox = regionprops(SAMPLE_3D)[0].bbox
    assert_array_almost_equal(bbox, (1, 1, 1, 4, 3, 3))
コード例 #37
0
def test_bbox():
    bbox = regionprops(SAMPLE)[0].bbox
    assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]))

    SAMPLE_mod = SAMPLE.copy()
    SAMPLE_mod[:, -1] = 0
    bbox = regionprops(SAMPLE_mod)[0].bbox
    assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1]-1))

    bbox = regionprops(SAMPLE_3D)[0].bbox
    assert_array_almost_equal(bbox, (1, 1, 1, 4, 3, 3))
コード例 #38
0
    def test_luv2xyz(self):
        assert_array_almost_equal(luv2xyz(self.luv_array),
                                  self.xyz_array, decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["d50", "d55", "d65", "d75"]:
            for obs in ["2", "10"]:
                fname = "color/tests/data/luv_array_{0}_{1}.npy".format(I, obs)
                luv_array_I_obs = np.load(fetch(fname))
                assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, obs),
                                          self.xyz_array, decimal=3)
        for I in ["a", "e"]:
            fname = "color/tests/data/luv_array_{0}_2.npy".format(I, obs)
            luv_array_I_obs = np.load(fetch(fname))
            assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, "2"),
                                      self.xyz_array, decimal=3)
コード例 #39
0
    def test_luv2xyz(self):
        assert_array_almost_equal(luv2xyz(self.luv_array),
                                  self.xyz_array, decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["d50", "d55", "d65", "d75"]:
            for obs in ["2", "10"]:
                fname = "luv_array_{0}_{1}.npy".format(I, obs)
                luv_array_I_obs = np.load(
                    os.path.join(os.path.dirname(__file__), 'data', fname))
                assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, obs),
                                          self.xyz_array, decimal=3)
        for I in ["a", "e"]:
            fname = "luv_array_{0}_2.npy".format(I, obs)
            luv_array_I_obs = np.load(
                os.path.join(os.path.dirname(__file__), 'data', fname))
            assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, "2"),
                                      self.xyz_array, decimal=3)
コード例 #40
0
ファイル: test_colorconv.py プロジェクト: yuxi5002/skimage
    def test_luv2xyz(self):
        assert_array_almost_equal(luv2xyz(self.luv_array),
                                  self.xyz_array, decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["d50", "d55", "d65", "d75"]:
            for obs in ["2", "10"]:
                fname = "luv_array_{0}_{1}.npy".format(I, obs)
                luv_array_I_obs = np.load(
                    os.path.join(os.path.dirname(__file__), 'data', fname))
                assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, obs),
                                          self.xyz_array, decimal=3)
        for I in ["a", "e"]:
            fname = "luv_array_{0}_2.npy".format(I, obs)
            luv_array_I_obs = np.load(
                os.path.join(os.path.dirname(__file__), 'data', fname))
            assert_array_almost_equal(luv2xyz(luv_array_I_obs, I, "2"),
                                      self.xyz_array, decimal=3)
コード例 #41
0
    def test_xyz2luv(self):
        assert_array_almost_equal(xyz2luv(self.xyz_array),
                                  self.luv_array,
                                  decimal=3)

        # Test the conversion with the rest of the illuminants.
        for I in ["A", "B", "C", "d50", "d55", "d65"]:
            I = I.lower()
            for obs in ["2", "10", "R"]:
                obs = obs.lower()
                fname = "color/tests/data/luv_array_{0}_{1}.npy".format(I, obs)
                luv_array_I_obs = np.load(fetch(fname))
                assert_array_almost_equal(luv_array_I_obs,
                                          xyz2luv(self.xyz_array, I, obs),
                                          decimal=2)
        for I in ["d75", "e"]:
            fname = "color/tests/data/luv_array_{0}_2.npy".format(I)
            luv_array_I_obs = np.load(fetch(fname))
            assert_array_almost_equal(luv_array_I_obs,
                                      xyz2luv(self.xyz_array, I, "2"),
                                      decimal=2)
コード例 #42
0
ファイル: test_exposure.py プロジェクト: yingfhu/scikit-image
def test_rescale_out_range():
    image = np.array([-10, 0, 10], dtype=np.int8)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert out.dtype == np.int8
    assert_array_almost_equal(out, [0, 63, 127])
コード例 #43
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_uint14_limits():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint14')
    assert_array_almost_equal(out, [0, uint14_max])
コード例 #44
0
def test_rescale_same_values():
    image = np.ones((2, 2))
    out = exposure.rescale_intensity(image)
    assert ~np.isnan(out).all()
    assert_array_almost_equal(out, image)
コード例 #45
0
def test_rescale_all_zeros():
    image = np.zeros((2, 2), dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert ~np.isnan(out).all()
    assert_array_almost_equal(out, image)
コード例 #46
0
def test_rescale_named_out_range():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint10')
    assert_array_almost_equal(out, [0, uint10_max])
コード例 #47
0
def test_rescale_in_range():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 255))
    assert_array_almost_equal(out, [0.2, 0.4, 0.6])
コード例 #48
0
def test_rescale_stretch():
    image = np.array([51, 102, 153], dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert out.dtype == np.uint8
    assert_array_almost_equal(out, [0, 127, 255])
コード例 #49
0
def test_rescale_shrink():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image)
    assert_array_almost_equal(out, [0, 0.5, 1])
コード例 #50
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_shrink():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image)
    assert_array_almost_equal(out, [0, 0.5, 1])
コード例 #51
0
def test_rescale_in_range_clip():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 102))
    assert_array_almost_equal(out, [0.5, 1, 1])
コード例 #52
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_in_range():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 255))
    assert_array_almost_equal(out, [0.2, 0.4, 0.6])
コード例 #53
0
def test_rescale_uint14_limits():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint14')
    assert_array_almost_equal(out, [0, uint14_max])
コード例 #54
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_in_range_clip():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 102))
    assert_array_almost_equal(out, [0.5, 1, 1])
コード例 #55
0
def test_rescale_constant():
    image = np.array([130, 130], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert_array_almost_equal(out, [127, 127])
コード例 #56
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_out_range():
    image = np.array([-10, 0, 10], dtype=np.int8)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert out.dtype == np.int8
    assert_array_almost_equal(out, [0, 63, 127])
コード例 #57
0
ファイル: test_histogram_matching.py プロジェクト: fmg30/diss
def test_match_array_values(array, template, expected_array):
    # when
    matched = histogram_matching._match_cumulative_cdf(array, template)

    # then
    assert_array_almost_equal(matched, expected_array)
コード例 #58
0
ファイル: test_exposure.py プロジェクト: Cadair/scikit-image
def test_rescale_named_out_range():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint10')
    assert_array_almost_equal(out, [0, uint10_max])