コード例 #1
0
def compositeThreshold(gray, mode='com'):
    if mode == 'otsu':
        otsu = threshold_otsu(gray)
        otsu_bin = gray > otsu
        otsu_bin = otsu_bin.astype(np.uint8) * 255
        return otsu_bin
    elif mode == 'yen':
        yen = threshold_yen(gray)
        yen_bin = gray > yen
        yen_bin = yen_bin.astype(np.uint8) * 255
        return yen_bin
    elif mode == 'li':
        li = threshold_li(gray)
        li_bin = gray > li
        li_bin = li_bin.astype(np.uint8) * 255
        return li_bin
    elif mode == 'niblack':
        niblack = threshold_niblack(gray, window_size=13, k=0.8)
        niblack_bin = gray > niblack
        niblack_bin = niblack_bin.astype(np.uint8) * 255
        return niblack_bin
    elif mode == 'sauvola':
        sauvola = threshold_sauvola(gray, window_size=13)
        sauvola_bin = gray > sauvola
        sauvola_bin = sauvola_bin.astype(np.uint8) * 255
        return sauvola_bin
    elif mode == 'com':
        li = threshold_li(gray)
        li_bin = gray > li
        li_bin = li_bin.astype(np.uint8) * 255
        otsu = threshold_otsu(gray)
        otsu_bin = gray > otsu
        otsu_bin = otsu_bin.astype(np.uint8) * 255
        yen = threshold_yen(gray)
        yen_bin = gray > yen
        yen_bin = yen_bin.astype(np.uint8) * 255
        return cv2.min(cv2.min(otsu_bin, li_bin), yen_bin)
    elif mode == "niblack-multi":
        thr = np.zeros((gray.shape), dtype=np.uint8)
        thr[thr >= 0] = 255
        for k in np.linspace(-0.8, 0.2, 5):  #(-1.8,0.2,5)
            thresh_niblack = threshold_niblack(gray, window_size=25, k=k)
            binary_niblack = gray > thresh_niblack
            binary_niblack = binary_niblack.astype(np.uint8) * 255
            showResult("binary_niblack", binary_niblack)
            thr = cv2.min(thr, binary_niblack)
        return thr
    else:
        sauvola = threshold_sauvola(gray, window_size=25, k=0.25)
        sauvola_bin = gray > sauvola
        sauvola_bin = sauvola_bin.astype(np.uint8) * 255
        niblack = threshold_niblack(gray, window_size=25, k=0.25)
        niblack_bin = gray > niblack
        niblack_bin = niblack_bin.astype(np.uint8) * 255
        return cv2.max(sauvola, niblack)
コード例 #2
0
def SauvolaModBinarization(image, n1=51, n2=51, k1=0.3, k2=0.3, default=True):
    '''
	 Binarization using Sauvola's algorithm
		@name : SauvolaModBinarization
	 parameters
		@param image (numpy array of shape (3/1) of type np.uint8): color or gray scale image
	 optional parameters
		@param n1 (int) : window size for running sauvola during the first pass
		@param n2 (int): window size for running sauvola during the second pass
		@param k1 (float): k value corresponding to sauvola during the first pass
		@param k2 (float): k value corresponding to sauvola during the second pass
		@param default (bool) : bollean variable to set the above parameter as default. 

			@param default is set to True : thus default values of the above optional parameters (n1,n2,k1,k2) are set to
				n1 = 5 % of min(image height, image width)
				n2 = 10 % of min(image height, image width)
				k1 = 0.5
				k2 = 0.5
		Returns
			@return A binary image of same size as @param image
		
		@cite https://drive.google.com/file/d/1D3CyI5vtodPJeZaD2UV5wdcaIMtkBbdZ/view?usp=sharing
    '''

    if (default):
        n1 = int(0.05 * min(image.shape[0], image.shape[1]))
        if (n1 % 2 == 0):
            n1 = n1 + 1
        n2 = int(0.1 * min(image.shape[0], image.shape[1]))
        if (n2 % 2 == 0):
            n2 = n2 + 1
        k1 = 0.5
        k2 = 0.5
    if (image.ndim == 3):
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray = np.copy(image)
    T1 = threshold_sauvola(gray, window_size=n1, k=k1)
    max_val = np.amax(gray)
    min_val = np.amin(gray)
    C = np.copy(T1)
    C = C.astype(np.float32)
    C[gray > T1] = (gray[gray > T1] - T1[gray > T1]) / (max_val -
                                                        T1[gray > T1])
    C[gray <= T1] = 0
    C = C * 255.0
    new_in = np.copy(C.astype(np.uint8))
    T2 = threshold_sauvola(new_in, window_size=n2, k=k2)
    binary = np.copy(gray)
    binary[new_in <= T2] = 0
    binary[new_in > T2] = 255
    return binary
コード例 #3
0
def sauvola(grayimg, w=51, k=0.2, scaledown=None, reverse=False):
    mask =None
    if scaledown is not None:
        mask = cv2.resize(grayimg,None,fx=scaledown,fy=scaledown)
        w = int(w * scaledown)
        if w % 2 == 0: w += 1
        mask = threshold_sauvola(mask, w, k)
        mask = cv2.resize(mask,(grayimg.shape[1],grayimg.shape[0]),fx=scaledown,fy=scaledown)
    else:
        if w % 2 == 0: w += 1
        mask = threshold_sauvola(grayimg, w, k)
    if reverse:
        return where(grayimg > mask, uint8(0), uint8(1))
    else:
        return where(grayimg > mask, uint8(1), uint8(0))
コード例 #4
0
ファイル: scriptCV.py プロジェクト: IanMendozaJaimes/SuperTT
    def processBinarization(self, algorithm=ImageAlgorithm.SAUVOLA):
        if algorithm == ImageAlgorithm.SAUVOLA:
            image = skimage.io.imread(fname=self.pathImg, as_gray=True)
            thresh_sauvola = threshold_sauvola(image, window_size=81)
            self.binary_sauvola = image > thresh_sauvola
            """
			self.binary_sauvola = invert(self.binary_sauvola)
			chull = convex_hull_image(self.binary_sauvola)
			[rows, columns] = np.where(chull)
			EPS = 50
			row1 = min(rows) - EPS
			row2 = max(rows) + EPS
			col1 = min(columns) - EPS
			col2 = max(columns) + EPS
			
			self.binary_sauvola = self.binary_sauvola[row1:row2, col1:col2]
			self.binary_sauvola = invert(self.binary_sauvola)
			"""
            self.binary_sauvola = invert(self.binary_sauvola)
            #selem = disk(6)

            self.binary_sauvola = thin(self.binary_sauvola, np.int(15))
            self.binary_sauvola = np.invert(self.binary_sauvola)

            #thresh_sauvola = threshold_sauvola(self.binary_sauvola, window_size=21)
            #self.binary_sauvola = self.binary_sauvola > thresh_sauvola

            self.binary_sauvola = erosion(self.binary_sauvola)

            #self.binary_sauvola = gaussian(self.binary_sauvola)

        elif algorithm == ImageAlgorithm.OTSU:
            self.otsuBinarization()
コード例 #5
0
def get_leaf_venation(gray_img):
    # using the sauvola algorithm
    threshold = threshold_sauvola(image=gray_img, window_size=11, k=0.04)
    venation_img = gray_img > threshold
    plt.imshow(venation_img)
    plt.show()
    return venation_img
コード例 #6
0
ファイル: binarize.py プロジェクト: apacha/smude
def binarize(image: np.ndarray, holes_threshold: float = 20) -> np.ndarray:
    """
    Binarize image using Sauvola algorithm.

    Parameters
    ----------
    image : np.ndarray
        RGB image to binarize.
    holes_threshold : float, optional
        Pixel areas covering less than the given number of pixels are removed in the process, by default 20.

    Returns
    -------
    binarized : np.ndarray
        Binarized and filtered image.
    """

    # Extract brightness channel from HSV-converted image
    image_gray = rgb2hsv(image)[:,:,2]

    # Enhance contrast
    image_gray = equalize_adapthist(image_gray, kernel_size=100)

    # Threshold using Sauvola algorithm
    thresh_sauvola = threshold_sauvola(image_gray, window_size=51, k=0.25)
    binary_sauvola = image_gray > thresh_sauvola

    # Remove small objects
    binary_cleaned = 1.0 * remove_small_holes(binary_sauvola, area_threshold=holes_threshold)

    # Remove thick black border (introduced during thresholding)
    binary_cleaned = flood_fill(binary_cleaned, (0, 0), 0)
    binary_cleaned = flood_fill(binary_cleaned, (0, 0), 1)
    
    return binary_cleaned.astype(np.bool)
コード例 #7
0
def binarise_sauvola(image, window_size = 59, k = 0.5, r = 128):
    thresh_sauvola = threshold_sauvola(image, window_size=window_size, k=k, r=r)

    binarised_sauvola = image > thresh_sauvola
    binarised_sauvola = img_as_ubyte(binarised_sauvola)

    return binarised_sauvola
コード例 #8
0
 def fit(self, X=None, y=None):
     if self.threshold_type == "otsu":
         threshold_function = lambda data: filters.threshold_otsu(data)
     elif self.threshold_type == "local_otsu":
         threshold_function = lambda data: filters.rank.otsu(data, morphology.square(self.block_size))
     elif self.threshold_type == "local":
         threshold_function = lambda data: filters.threshold_local(data, self.block_size)
     elif self.threshold_type == "niblack":
         threshold_function = lambda data: filters.threshold_niblack(data, self.block_size)
     elif self.threshold_type == "sauvola":
         threshold_function = lambda data: filters.threshold_sauvola(data, self.block_size)
     elif self.threshold_type is None:
         threshold_function = None
     else:
         raise ValueError("Unknown threshold type: {}".format(self.threshold_type))
     self.ocr_reader_ = screen_ocr.Reader.create_reader(
         backend=self.backend,
         threshold_function=threshold_function,
         correction_block_size=self.correction_block_size,
         margin=self.margin,
         resize_factor=self.resize_factor,
         resize_method=self.resize_method,
         convert_grayscale=self.convert_grayscale,
         shift_channels=self.shift_channels,
         label_components=self.label_components,
         debug_image_callback=None)
コード例 #9
0
def main(img, ws):
    image = img

    binary_global = image > threshold_otsu(image)

    window_size = ws
    thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
    thresh_sauvola = threshold_sauvola(image, window_size=window_size)

    binary_niblack = image > thresh_niblack
    binary_sauvola = image > thresh_sauvola

    plt.figure(figsize=(8, 7))
    plt.subplot(2, 2, 1)
    plt.imshow(image, cmap=plt.cm.gray)
    plt.title('Original')
    plt.axis('off')

    plt.subplot(2, 2, 2)
    plt.title('Global Threshold')
    plt.imshow(binary_global, cmap=plt.cm.gray)
    plt.axis('off')

    plt.subplot(2, 2, 3)
    plt.imshow(binary_niblack, cmap=plt.cm.gray)
    plt.title('Niblack Threshold')
    plt.axis('off')

    plt.subplot(2, 2, 4)
    plt.imshow(binary_sauvola, cmap=plt.cm.gray)
    plt.title('Sauvola Threshold')
    plt.axis('off')

    return plt, binary_global, binary_niblack, binary_sauvola
コード例 #10
0
def threshold(image,
              *,
              sigma=0.,
              radius=0,
              offset=0.,
              method='sauvola',
              smooth_method='Gaussian'):
    """Use scikit-image filters to "intelligently" threshold an image.

    Parameters
    ----------
    image : array, shape (M, N, ...[, 3])
        Input image, conformant with scikit-image data type
        specification [1]_.
    sigma : float, optional
        If positive, use Gaussian filtering to smooth the image before
        thresholding.
    radius : int, optional
        If given, use local median thresholding instead of global.
    offset : float, optional
        If given, reduce the threshold by this amount. Higher values
        result in fewer pixels above the threshold.
    method: {'sauvola', 'niblack', 'median'}
        Which method to use for thresholding. Sauvola is 100x faster, but
        median might be more accurate.
    smooth_method: {'Gaussian', 'TV'}
        Which method to use for smoothing. Choose from Gaussian smoothing
        and total variation denoising.

    Returns
    -------
    thresholded : image of bool, same shape as `image`
        The thresholded image.

    References
    ----------
    .. [1] http://scikit-image.org/docs/dev/user_guide/data_types.html
    """
    if sigma > 0:
        if smooth_method.lower() == 'gaussian':
            image = filters.gaussian(image, sigma=sigma)
        elif smooth_method.lower() == 'tv':
            image = restoration.denoise_tv_bregman(image, weight=sigma)
    if radius == 0:
        t = filters.threshold_otsu(image) + offset
    else:
        if method == 'median':
            footprint = hyperball(image.ndim, radius=radius)
            t = ndi.median_filter(image, footprint=footprint) + offset
        elif method == 'sauvola':
            w = 2 * radius + 1
            t = threshold_sauvola(image, window_size=w, k=offset)
        elif method == 'niblack':
            w = 2 * radius + 1
            t = threshold_niblack(image, window_size=w, k=offset)
        else:
            raise ValueError('Unknown method %s. Valid methods are median,'
                             'niblack, and sauvola.' % method)
    thresholded = image > t
    return thresholded
コード例 #11
0
ファイル: main.py プロジェクト: nancy9taya/NoteRecognizer
def threshold(img):
    cpy = img.copy()
    blk = max(cpy.shape[0], cpy.shape[1])
    blk = int(blk * 0.03) + 1 if int(blk * 0.03) % 2 == 0 else int(blk * 0.03)
    thresh_sauvola = threshold_sauvola(cpy, blk)
    binary_sauvola = cpy > thresh_sauvola
    return binary_sauvola
コード例 #12
0
def main():
    image = cv2.imread("./counter_images/01305.png", cv2.IMREAD_GRAYSCALE)
    # image = cv2.imread("../venv/lib/python3.7/site-packages/skimage/data/page.png", cv2.IMREAD_GRAYSCALE)

    image = 255 - image

    image = cv2.medianBlur(image, 7)

    binary_global = image > threshold_otsu(image)
    binary_global = np.uint8(binary_global * 255)

    window_size = 41
    thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
    thresh_sauvola = threshold_sauvola(image, window_size=window_size, k=.1)

    binary_niblack = image > thresh_niblack
    binary_niblack = np.uint8(binary_niblack * 255)

    binary_sauvola = image > thresh_sauvola
    binary_sauvola = np.uint8(binary_sauvola * 255)

    imshowWait(image=image,
               binary_global=binary_global,
               binary_niblack=binary_niblack,
               binary_sauvola=binary_sauvola)
コード例 #13
0
def transform_img(img, img_rows, img_cols, mnist=False):
    # Binarize
    thresh = threshold_sauvola(img, window_size=13, k=0.025, r=0.5)
    img = (img < thresh)

    [h, w] = img.shape

    # Pad
    if w > h:
        factor = img_cols / w
        img = rescale(img, factor, mode='constant', cval=0)
        diff = (img_rows - img.shape[0]) / 2

        img = np.pad(img, ((int(ceil(diff)), int(floor(diff))), (0, 0)),
                     'constant',
                     constant_values=((0, )))
    else:
        factor = img_rows / h
        img = rescale(img, factor, mode='constant', cval=0)
        diff = (img_cols - img.shape[1]) / 2

        img = np.pad(img, ((0, 0), (int(ceil(diff)), int(floor(diff)))),
                     'constant',
                     constant_values=((0, )))

    # Binarize again
    if mnist:
        ret = (img > 0.4).astype(int)
    else:
        ret = binary_dilation(img)
        ret = ret.astype(int)

    return ret
コード例 #14
0
def preprocessImage(img_path):
    # preprocess and load input image
    img = cv2.imread(img_path)
    resized_image = cv2.resize(img, (250, 250))
    # removing noise form colored images
    denoised_image = cv2.fastNlMeansDenoisingColored(resized_image, None, 10,
                                                     10, 7, 21)
    denoised_img_name = imgName()
    cv2.imwrite("online_data_collection/image_processing/" + denoised_img_name,
                denoised_image)
    # Since denoiseing converts BGR image to CELAB, converting CELAB to BGR
    bgr_image = cv2.cvtColor(denoised_image, cv2.COLOR_Lab2BGR)
    bgr_img_name = imgName()
    cv2.imwrite("online_data_collection/image_processing/" + bgr_img_name,
                bgr_image)
    # Converion of BGR to Grayscale
    gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
    gray_img_name = imgName()
    cv2.imwrite("online_data_collection/image_processing/" + gray_img_name,
                gray_image)
    # Binarization
    thres_sauvola = threshold_sauvola(gray_image, window_size=17)
    binary_sauvola = gray_image > thres_sauvola
    binary_sauvola = img_as_ubyte(binary_sauvola)
    binary_img_name = imgName()
    cv2.imwrite("online_data_collection/image_processing/" + binary_img_name,
                binary_sauvola)
    # Smoothing image
    # smooth_image = cv2.medianBlur(binary_sauvola, 3)
    smooth_image = cv2.bilateralFilter(binary_sauvola, 9, 75, 75)
    smooth_img_name = imgName()
    cv2.imwrite("online_data_collection/image_processing/" + smooth_img_name,
                smooth_image)
    return denoised_img_name, bgr_img_name, gray_img_name, binary_img_name, smooth_img_name
コード例 #15
0
ファイル: dt_sim.py プロジェクト: Snackya/DotTrack
def preprocess_image(img, pipeline_id="baseline"):
    if pipeline_id == "direct_bit_extract":
        # No preprocessing wanted
        return img

    # dpi = img.info["dpi"]
    # Edge enhance
    img = img.filter(ImageFilter.EDGE_ENHANCE_MORE)

    # Thresholding
    img = skimage.img_as_ubyte(img)

    # Tests
    # from skimage.filters import (try_all_threshold, threshold_sauvola,
    #                              threshold_local, threshold_niblack)
    # import matplotlib.pyplot as plt

    # tmp = skimage.img_as_ubyte(img > threshold_local(img, 15))
    # Image.fromarray(tmp).show()

    # tmp = skimage.img_as_ubyte(img > threshold_niblack(img))
    # Image.fromarray(tmp).show()

    # tmp = skimage.img_as_ubyte(img > threshold_sauvola(img))
    # Image.fromarray(tmp).show()

    # fig, ax = try_all_threshold(img, verbose=False)
    # plt.show()

    img = skimage.img_as_ubyte(img > threshold_sauvola(img))
    img = Image.fromarray(img)
    # img.info["dpi"] = dpi
    return img
コード例 #16
0
ファイル: strobopy.py プロジェクト: kbschliep/StroboPy
def thresh(image,threshtype='local', make_binary=True, simple=False):
    im=image.copy()
    if simple==True:
        im[im<0]=0
        return im

    if threshtype=='global':
        from skimage.filters import threshold_otsu
        try:
            thresh = threshold_otsu(im) 
        except ValueError:
            thresh=0
        binary= im>thresh
        
        if make_binary==False:
            return binary
        return binary.astype(int)
            
    if threshtype=='local':
        from skimage.filters import threshold_sauvola
        thresh = threshold_sauvola(im)

    binary = im< thresh
    if make_binary==False:
        return binary
    return binary.astype(int)
コード例 #17
0
def binarize_sauvola(image):
    #binarized_filename = input_image_filename.split(".")[0] + "_bin.png"

    # image = page()
    # image binarized_filename
    # image = io.imread(input_image_filename)

    # opening and grayscaling the image
    #image = cv2.imread(input_image_filename, cv2.IMREAD_GRAYSCALE)

    #thresh_niblack = threshold_niblack(image, k=0.8)
    thresh_sauvola = threshold_sauvola(image)

    #binary_niblack = image > thresh_niblack
    binary_sauvola = image > thresh_sauvola

    #binary_niblack = binary_niblack.astype(int)
    binary_sauvola = binary_sauvola.astype(int)

    #binary_niblack *= 255
    binary_sauvola *= 255

    # applying the binarization
    # image_bin = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

    #cv2.imwrite("niblack.png", binary_niblack)
    cv2.imwrite("sauvola.png", binary_sauvola)

    #print("Binarization completed! Binarized image saved into ", binarized_filename)
    #return binarized_filename
コード例 #18
0
ファイル: SimpleMethod.py プロジェクト: er713/IwM-Oko
 def __sauvola_method(image: Union[np.ndarray, Iterable, np.uint8], stream,
                      progres) -> np.ndarray:
     th = threshold_sauvola(image, window_size=45)
     im = image <= th
     # imshow(im, cmap='gray')
     # plt.show()
     progres.progress(33)
     # stream[1].append(im)
     # stream[0].image(stream[1], width=300)
     # if im.shape[0] > 1000:
     #     gaus = 7
     # elif im.shape[0] > 650:
     #     gaus = 3
     # else:
     #     gaus = 1
     if im.shape[0] > 400:
         gaus = int(0.00330957 * im.shape[0] - 0.13687352)
     else:
         gaus = 1
     result = gaussian(im, gaus)
     # imshow(result)
     # plt.show()
     progres.progress(66)
     stream[1].append(result)
     stream[0].image(stream[1], width=300)
     # result = minimum(maximum(result, disk(5)), disk(12))
     # imshow(result)
     # plt.show()
     return result
コード例 #19
0
def blob_detection2(post_masked_processed, draw):
    """ Funtion that performs blob detection to localize electrodes. Does not include dilation and erosion. For use in problematic images where blobs are hard to locate.
    Inputs : Processed post oeprative image, draw (Bool)
    Outputs : If draw is True, outputs an image with the blobs drawn
                  If draw is False, outputs the coordinates of the centers of the blobs
    """

    # Initial set up; no erosion or dilationn

    img = cv2.normalize(post_masked_processed, None, 0, 255, cv2.NORM_MINMAX)
    img = img.astype('uint8')
    img = cv2.medianBlur(img, 11)

    th2 = filters.threshold_sauvola(img)
    th2 = 255 - th2
    th2 = th2.astype("uint8")
    # Set our filtering parameters
    # Initialize parameter settiing using cv2.SimpleBlobDetector
    params = cv2.SimpleBlobDetector_Params()

    # Set Area filtering parameters
    params.filterByArea = True
    params.minArea = 10

    # Set Circularity filtering parameters
    params.filterByCircularity = False
    params.minCircularity = 0.1

    # Set Convexity filtering parameters
    params.filterByConvexity = True
    params.minConvexity = 0.1

    # Set inertia filtering parameters
    params.filterByInertia = True
    params.minInertiaRatio = 0.01

    # Create a detector with the parameters
    detector = cv2.SimpleBlobDetector_create(params)

    # Detect blobs
    keypoints = detector.detect(th2)

    if draw == True:
        # Draw blobs on our image as red circles
        blank = np.zeros((1, 1))
        blobs = cv2.drawKeypoints(th2, keypoints, blank, (0, 0, 255),
                                  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

        number_of_blobs = len(keypoints)
        text = "Number of Circular Blobs: " + str(len(keypoints))
        cv2.putText(blobs, text, (20, 550), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (0, 100, 255), 2)
        return blobs
    else:
        result = []
        for point in keypoints:
            x = point.pt[0]
            y = point.pt[1]
            result.append([x, y])
        return result
コード例 #20
0
def ThresholdSauvola(img):
    ## based on observation using these values of k,r work best (default k=0.2)
    thresh_sauvola = threshold_sauvola(img.copy(), window_size=31, k=0.1, r=45)
    binary_sauvola = img > thresh_sauvola
    image = binary_sauvola.astype('uint8')*255

    ## Sauvola is edge sensitive and prone to creating thick borders around image. Try remove them based on size
    contours, _ = cv2.findContours(255-image.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)
    mask = np.ones(img.shape[:2], dtype="uint8") * 255
 
    mask_remove = cv2.imread('image.jpg', cv2.IMREAD_ANYCOLOR)
    mask_retain = cv2.imread('image.jpg', cv2.IMREAD_ANYCOLOR)
 
    # loop over the contours
    for c in contours:
        # if the contour is bad, draw it on the mask
        if is_good_contour_for_line_segmentation(c, 255-image.copy())==True:
            r = cv2.boundingRect(c)
            cv2.rectangle(mask, (r[0],r[1]), (r[0]+r[2],r[1]+r[3]), color=0, thickness=-1)
            cv2.drawContours(mask_retain, [c], 0, color=(0,255,0), thickness=1)
        else:
            #r = cv2.boundingRect(c)
            cv2.drawContours(mask_remove, [c], 0, color=(0,0,255), thickness=-1)
    
    showimage(mask_retain, 'retaining-this')
    showimage(mask_remove, 'removing-this')


    # remove the contours from the image and show the resulting images
    showimage(255-mask,'contour-removal-mask')
    ## AARGH! someone please simplify this! X is the correct form, it has already been inverted so text is white.
    x = cv2.bitwise_and(255-image.copy(),255-mask, mask=255-mask)
    return x
コード例 #21
0
def process_regions(image, blur_sigma=3, opening_size=3, orientation_deviation=15, overlap_minimum=0.8):
    '''
    Attempt to find any possible marker corner regions in a given image

    Inputs:
        - image: grayscale image that may contain a marker
        - blur_sigma: parameter for Gaussian blur to use on image
        - opening_size: parameter for morphological opening to use on image
        - orientation_deviation: see orientation parameter used by region_filter_heuristic(...)
        - overlap_minimum: see similarity parameter used by region_filter_heuristic(...)
    Returns: a 2-tuple of:
        - the image after pre-processing steps like blurring, thresholding, etc.
        - the list of regionprops that may be possible marker corners
    '''
    # Blur and equalize the image
    image = exposure.equalize_hist(image)
    image = filters.gaussian(image, sigma=blur_sigma)
    
    # Use local thresholding
    image = (image <= filters.threshold_sauvola(image, k=0.1))
    image = morphology.opening(image, selem=morphology.disk(opening_size))
    
    # Label components in the image
    labeled = measure.label(image, connectivity=2)
    components = measure.regionprops(labeled, intensity_image=image)
    
    # Sort the components by our rectangle heuristic
    return image, labeled, [r for r in components if region_filter_heuristic(r, orientation_deviation, overlap_minimum)]
コード例 #22
0
def thickness_score(im, window_size=5, threshold=10, name=None):
    if im.ndim == 3:
        im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_BGR2GRAY)
    cv2.imwrite('raw_' + name, im)
    
    edge = cv2.Canny(im,50,100)  
    cv2.imwrite('edge_' + name, edge)
    e_pixel_count = 0
    for i in range(edge.shape[0]):
        for j in range(edge.shape[1]):
            if edge[i][j] == 255:
                e_pixel_count += 1
    

    # 计算感兴趣的区域(文字区域)
    # threshold_val, _ = cv2.threshold(im, -1, 255, cv2.THRESH_OTSU)
    threshold_val = threshold_sauvola(im, window_size=15, k=0.15)
    roi = np.zeros_like(im)
    roi = np.array(im < threshold_val + 10).astype(np.int32) # roi范围扩大一些?
    roi_pixel_count = 0
    for i in range(roi.shape[0]):
        for j in range(roi.shape[1]):
            if roi[i][j] == 1:
                roi_pixel_count += 1

    cv2.imwrite('roi_' + name, roi*255)

    stroke_width = 0

    if e_pixel_count == 0:
        stroke_width = -1
    else:
        stroke_width =  float(roi_pixel_count / e_pixel_count)
    print('stroke width:', stroke_width)
    return stroke_width
コード例 #23
0
def cod16(image):
    # hint: increase contrast.
    window_size = 3
    # image = cv.imread("sample2.jpg")
    #   image = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
    # ix = lambda i: cv.cvtColor(i, cv.COLOR_RGB2GRAY)
    # print(type(image),image.shape)
    # print(image)
    image = clahe_demo(image)
    # must use gray.
    # print("spliter")
    # that is f*****g insane.
    thresh_niblack = (
        toReal(threshold_niblack(image, window_size=window_size, k=3)) *
        255.0).astype(np.uint8)
    thresh_sauvola0 = (
        toReal(threshold_sauvola(image, window_size=3, k=1.303)) *
        255.0).astype(np.uint8)  # for full scan?
    # perfect inverse of the one above
    thresh_sauvola1 = (toReal(
        threshold_sauvola(image, window_size=3, k=0.999999999999999999)) *
                       255.0).astype(np.uint8)  # for button detection?
    # just filter those things out.
    # thresh_niblack = threshold_niblack(image, window_size=window_size, k=12).astype(np.uint8)
    # thresh_sauvola0 = threshold_sauvola(image, window_size=3, k=1.103).astype(np.uint8)  # for full scan?
    # # perfect inverse of the one above
    # thresh_sauvola1 = threshold_sauvola(image, window_size=3, k=1.523).astype(np.uint8)  # for button detection?
    # print(type(thresh_niblack), thresh_niblack.shape)
    # print(type(thresh_niblack[0][0]))
    # ndarray.
    # it just cannot be right. give it up?
    # the shape can differ.
    # calcMe(thresh_niblack)
    # calcMe(thresh_sauvola0)
    # calcMe(thresh_sauvola1)
    # cv.imshow("grayimage",thresh_niblack)
    # cv.waitKey(0)
    # cv.imshow("thresholdimage", thresh_sauvola0)
    # cv.waitKey(0)
    # cv.imshow("thresholdimage", thresh_sauvola1)
    # cv.waitKey(0)
    # cv.destroyAllWindows()
    # return
    # # use floor function?
    # # just what the f**k?
    return thresh_niblack, thresh_sauvola0, thresh_sauvola1
コード例 #24
0
def doThresholding(method, window_size, k, img):
    if method == 'niblack':
        th_mask = threshold_niblack(img, window_size=window_size, k=k)
    if method == 'sauvola':
        th_mask = threshold_sauvola(img, window_size=window_size)

    binary_mask = img < th_mask
    return(binary_mask)
コード例 #25
0
def binarize(img, window_size=35):
    # cv_image = img_as_ubyte(img)
    # img = cv2.adaptiveThreshold(cv_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, window_size, 0)

    thresh = filters.threshold_sauvola(img, window_size)
    img = img > thresh
    img = np.array(img * 255, dtype=np.uint8)
    return img
コード例 #26
0
ファイル: edmshed.py プロジェクト: baigouy/EPySeg
def sauvola(img, window_size=25, min_threshold=0.02):
    k = 0.25
    r = 0.5

    t = threshold_sauvola(img, window_size=window_size, k=k, r=r)
    if min_threshold is not None:
        t[t <= min_threshold] = min_threshold
    return t
コード例 #27
0
def extract_feature(arr):
    radius = 1
    n_points = radius * 8

    arr = cv2.cvtColor(arr, cv2.COLOR_BGR2GRAY)

    distances = [1, 5]
    angles = [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4]
    glcm = greycomatrix(arr,
                        distances=distances,
                        angles=angles,
                        levels=256,
                        symmetric=False,
                        normed=False)
    # properties = ['dissimilarity', 'homogeneity', 'contrast', 'ASM', 'energy', 'correlation']
    # glcm_feats = np.hstack([greycoprops(glcm, prop=prop).ravel() for prop in properties])
    glcm_feats = np.hstack(
        [adadoc.greycoprops(glcm[:, :, i, :]) for i in range(0, 2)]).ravel()

    hog_feats = hog(arr,
                    orientations=9,
                    pixels_per_cell=(8, 8),
                    cells_per_block=(1, 1),
                    block_norm='L2-Hys',
                    feature_vector=True)

    ent = entropy(arr)

    # # prepare filter bank kernels
    # kernels = []
    # for theta in range(4):
    #     theta = theta / 4. * np.pi
    #     for sigma in (1, 3):
    #         for frequency in (0.05, 0.25):
    #             kernel = np.real(gabor_kernel(frequency, theta=theta,
    #                                           sigma_x=sigma, sigma_y=sigma))
    #             kernels.append(kernel)
    # gabor_feat = compute_feats(arr, kernels).ravel()

    thresh_sauvola = threshold_sauvola(arr, window_size=31, k=0.2)
    arr = arr > thresh_sauvola
    arr = (255 - arr * 255).astype('uint8')

    # arr = adadoc.adath(arr, method=adadoc.ADATH_SAUVOLA | adadoc.ADATH_INVTHRESH,
    #                    xblock=21, yblock=21, k=0.2, dR=64, C=0)

    lbp_code = local_binary_pattern(arr, n_points, radius, 'uniform')

    # n_bins = int(lbp_code.max() + 1)
    n_bins = 16
    lbp_feats, _ = np.histogram(lbp_code,
                                normed=True,
                                bins=n_bins,
                                range=(0, n_bins))

    data_feat = np.hstack([lbp_feats, ent, glcm_feats, hog_feats])

    return data_feat
コード例 #28
0
ファイル: water_functions.py プロジェクト: jziemer1996/Wateks
def threshold_sauvola(arr1d):
    """
    doesnt work: TypeError: ndarray() missing required argument 'shape' (pos 1)
    :param arr1d:
    :return:
    """
    import skimage.filters as sf
    thresh = sf.threshold_sauvola(arr1d, window_size=15, k=0.2, r=None)
    return thresh
コード例 #29
0
def binarization(image):
    binarized_image = copy.deepcopy(image)
    window_size = 33  #Parameter window_size determines the size of the window that contains the surrounding pixels, window size must be odd and greater than 1
    thresh_matrix = threshold_sauvola(
        image, window_size=window_size)  #Return matrix of thresholds
    sauvola_image = image > thresh_matrix  #Comparing pixel value with the threshold
    binarized_image[sauvola_image == False] = 0
    binarized_image[sauvola_image == True] = 255
    return binarized_image
コード例 #30
0
def estimate_dominant_fontsize(img, dark_text=None, verbose=0):
    ih, iw = img.shape[:2]
    kernel = np.array([1, 2, 3, 4, 5, 4, 3, 2, 1], dtype=np.float32)
    kernel = kernel / np.sum(kernel)
    paper_name, _ = parse_paper_size(ih, iw)
    est_lh = compute_fontsize_in_pixels_for_paper(max(ih, iw),
                                                  font_size=10,
                                                  paper_name=paper_name)
    # binarize image
    if (img.ndim == 2):
        gimg = img
    else:
        gimg = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    #mimg = threshold_otsu( gimg )
    mimg = threshold_sauvola(gimg,
                             window_size=min(
                                 min(ih, iw) // 20 * 2 + 1,
                                 int(est_lh * 5) // 2 * 2 + 1))
    if (dark_text is not None):
        if (dark_text):
            text = (gimg < mimg).astype('uint8') * 255
        else:
            text = (gimg > mimg).astype('uint8') * 255
    else:
        bimg = (gimg < mimg)
        if (np.sum(bimg) < bimg.size // 2):
            text = bimg.astype('uint8') * 255
            verbose_print(
                verbose,
                "INFO: estimated case = DARK TEXT on bright background")
        else:
            text = (1 - bimg.astype('uint8')) * 255
            verbose_print(
                verbose,
                "INFO: estimated case = BRIGHT TEXT on dark background")
    cvCCA = cv2.connectedComponentsWithStats(text, 8, cv2.CV_32S)
    num_regs, labels, reg_stats, centroids = cvCCA
    # estimate dominated fontsize
    rel_lut = dict()
    for label in range(num_regs):
        # retrieving the width of the bounding box of the component
        width = reg_stats[label, cv2.CC_STAT_WIDTH]
        # retrieving the height of the bounding box of the component
        height = reg_stats[label, cv2.CC_STAT_HEIGHT]
        if (height > est_lh * .75) and (height < est_lh * 10):
            if (height not in rel_lut):
                rel_lut[height] = 0
            rel_lut[height] += width
    keys = list(rel_lut)
    vals = list(rel_lut.values())
    vall = np.sum(vals)
    obs = np.zeros(np.max(keys) + 1)
    for k, v in zip(keys, vals):
        obs[k] = float(v) / vall
    n_obs = np.convolve(obs, kernel, mode='same')
    dominant_fontsize = np.argmax(n_obs)
    return dominant_fontsize
コード例 #31
0
import matplotlib.pyplot as plt

from skimage.data import page
from skimage.filters import (threshold_otsu, threshold_niblack,
                             threshold_sauvola)


matplotlib.rcParams['font.size'] = 9


image = page()
binary_global = image > threshold_otsu(image)

window_size = 25
thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
thresh_sauvola = threshold_sauvola(image, window_size=window_size)

binary_niblack = image > thresh_niblack
binary_sauvola = image > thresh_sauvola

plt.figure(figsize=(8, 7))
plt.subplot(2, 2, 1)
plt.imshow(image, cmap=plt.cm.gray)
plt.title('Original')
plt.axis('off')

plt.subplot(2, 2, 2)
plt.title('Global Threshold')
plt.imshow(binary_global, cmap=plt.cm.gray)
plt.axis('off')