コード例 #1
0
    def filter_on_class_size(self, path, class_int, pixel_size=5):
        """
        Filter the classified pixels by a minimum pixel size
        """
        ds = rasterio.open(path)
        ar = ds.read(1)

        # Filter for Gully class
        ar[ar != class_int] = 0

        # Set up structure for connectivity and find connectivity
        structure = np.ones((3, 3), dtype=np.int)
        labeled, ncomponents = label(ar, structure)

        # use sklabel to find the sizes of the labels
        labels = sklabel(ar)
        unique, counts = np.unique(labels, return_counts=True)
        label_filt = unique[(counts > 5) & (counts < max(counts))]

        # Filter based on label size
        array_filt = labeled == label_filt[0]
        for l in label_filt:
            array_filt += labeled == l

        array_filt = array_filt.astype(int)

        return array_filt
コード例 #2
0
    def get_bounding_boxes_for_single_label(label,
                                            obj_type=True,
                                            box_type='x1,y1,x2,y2',
                                            in_percent=False):
        boxes = list()

        label[label != obj_type] = 0

        regions = regionprops(sklabel(label))

        for region in regions:
            y1, x1, y2, x2 = region.bbox
            if in_percent:
                label_h, label_w = label.shape
                y1 = y1 / label_h
                x1 = x1 / label_w
                y2 = y2 / label_h
                x2 = x2 / label_w
            if box_type == 'x1,y1,x2,y2':
                boxes.append((x1, y1, x2, y2))
            elif box_type == 'xm,ym,w,h':
                w = x2 - x1
                h = y2 - y1
                xm = x1 + w // 2
                ym = y1 + h // 2
                boxes.append((xm, ym, w, h))
            else:
                # use 'x1,y1,x2,y2' if wrong format was given
                boxes.append((x1, y1, x2, y2))

        return boxes
コード例 #3
0
    def label(self, mask, connectivity=2):
        """label objects

        Parameters
        ----------
        mask (numpy.array):  mask array, same size with field

        Returns
        -------
        pass
        """
        label_mask = sklabel(mask, connectivity=connectivity)
        return label_mask
コード例 #4
0
 def centroids_bw(self, im, small_th=2, edge_crop=4):
     from skimage.measure import label as sklabel
     from skimage.measure import regionprops as skregionprops
     centroids = []
     sx, sy = im.shape
     label_ = sklabel(im)
     for region in skregionprops(label_):
         if region.area > small_th:
             cent = region.centroid
             if cent[0] > edge_crop and cent[1] > edge_crop and sx - cent[
                     0] > edge_crop and sy - cent[1] > edge_crop:
                 centroids.append(cent)
     return centroids
コード例 #5
0
def label_particles_convolve(im, kern, thresh=0.45, **extra_args):
    """
    Given image and kenerl, use the kernel to convolve with the image, 
    if value larger than threshold, make it 1, otherwise 0.
    use 1 and 0 to build the center segments
    """
    kernel = np.sign(kern) * gdisk(abs(kern) / 4, abs(kern))
    convolved = ndimage.convolve(im, kernel)
    convolved -= convolved.min()
    convolved /= convolved.max()

    threshed = convolved > thresh

    labels = sklabel(threshed, connectivity=1)

    return labels, convolved, threshed
コード例 #6
0
def largestConnectComponent(bw_img):
    if np.sum(bw_img)==0:
        return bw_img
    labeled_img, num = sklabel(bw_img, neighbors=4, background=0, return_num=True)
    if num == 1:
        return bw_img


    max_label = 0
    max_num = 0
    for i in range(0,num):
        print(i)
        if np.sum(labeled_img == (i+1)) > max_num:
            max_num = np.sum(labeled_img == (i+1))
            max_label = i+1
    mcr = (labeled_img == max_label)
    return mcr.astype(np.int)
コード例 #7
0
def seg_label(label):
    segs = []
    for fg in FG_LABEL:
        mask = label == fg
        if torch.sum(mask) > 0:
            masknp = mask.cpu().numpy().astype(int)
            seg, forenum = sklabel(masknp,
                                   background=0,
                                   return_num=True,
                                   connectivity=2)
            seg = torch.LongTensor(seg).cuda()
            pixelnum = np.zeros(forenum, dtype=int)
            for i in range(forenum):
                pixelnum[i] = torch.sum(seg == (i + 1)).item()
            segs.append([seg, pixelnum])
        else:
            segs.append([mask.long(), np.zeros(0)])
    return segs
コード例 #8
0
def maximum_uncertainty_region(data,
                               uncertainty_threshold="mean",
                               morph_opening_struct=None,
                               region_mode="sum"):
    """Return mask where data has the largest connected region > threshold"""

    if np.min(data) == np.max(data):
        return np.ones(data.shape, dtype=np.float32)

    # set threshold to mean if nothing was specified
    if uncertainty_threshold == "mean":
        uncertainty_threshold = np.mean(data)
    else:
        uncertainty_threshold = uncertainty_threshold * (np.max(data) - np.min(data)) + np.min(data)


    thresh_data = data >= uncertainty_threshold
    if morph_opening_struct is not None:
        thresh_data = opening(thresh_data, morph_opening_struct)

    # create thresholded image and image with labeled components
    regions_labeled = sklabel(thresh_data, background=0)
    labels = np.unique(regions_labeled)

    # get uncertainty for each region
    uncertainties = [0]
    for label in labels:
        if label == 0:
            continue
        if region_mode == "sum":
            uncertainty = np.sum(data * (regions_labeled == label))
        elif region_mode in ("average", "mean"):
            uncertainty = np.sum(data * (regions_labeled == label)) / np.float(np.sum(regions_labeled == label))
        else:
            raise ValueError("Unknown option for region_mode: {}".format(region_mode))
        uncertainties.append(uncertainty)
    max_component = np.argmax(uncertainties)

    # create mask of target region
    return regions_labeled == max_component
def anchorsbi(label, origin_size=(720,1280), iou_thresh=0.4):
    h,w = label.shape[0], label.shape[1]
    h_scale, w_scale = float(origin_size[0])/h, float(origin_size[1])/w
    hthre = np.ceil(32./h_scale)
    wthre = np.ceil(32./w_scale)
    anchors = []
    for fg in FG_LABEL:
        mask = label==fg
        foreidx = 1
        if torch.sum(mask)>0:
            
            masknp = mask.cpu().clone().detach().numpy().astype(int)
            seg, foreidx = sklabel(masknp, background=0, return_num=True, connectivity=2)
            foreidx += 1

        anc_cls = np.zeros((foreidx-1,5))
        for fi in range(1, foreidx):
            x,y = np.where(seg==fi)
            anc_cls[fi-1,:4] = np.min(x), np.min(y), np.max(x), np.max(y)
            area = (anc_cls[fi-1,2] - anc_cls[fi-1,0])*(anc_cls[fi-1,3] - anc_cls[fi-1,1])
            anc_cls[fi-1,4] = float(len(x)) / max(area, 1e-5)
        if len(anc_cls) > 0:
            hdis = anc_cls[:,2] - anc_cls[:,0]
            wdis = anc_cls[:,3] - anc_cls[:,1]
            anc_cls = anc_cls[np.where((hdis>=hthre)&(wdis>=wthre))[0],:]
            area = (anc_cls[:,2] - anc_cls[:,0])*(anc_cls[:,3] - anc_cls[:,1])
            sortidx = np.argsort(area)[::-1]
            anc_cls = anc_cls[sortidx,:]
            if len(anc_cls) > 0:
                anc_cls = anc_cls[np.where(anc_cls[:,4]>=iou_thresh)[0],:]
            if len(anc_cls) > 0:
                anc_cls[:,0] = np.floor(h_scale*anc_cls[:,0])
                anc_cls[:,2] = np.ceil(h_scale*anc_cls[:,2])
                anc_cls[:,2] = np.where(anc_cls[:,2]<origin_size[0], anc_cls[:,2], origin_size[0])
                anc_cls[:,1] = np.ceil(w_scale*anc_cls[:,1])
                anc_cls[:,3] = np.ceil(w_scale*anc_cls[:,3])
                anc_cls[:,3] = np.where(anc_cls[:,3]<origin_size[1], anc_cls[:,3], origin_size[1])
        anchors.append(anc_cls)
    
    return anchors
コード例 #10
0
    
    ##    from here do pore segmentation, i.e. connected components after cutting in dz_pnm thick slices
    #   
        
        
        pnm_domain = sim_domain
        pnm_domain = np.zeros(sim_domain.shape, dtype = np.uint16)
        
        num_segments = int(sim_domain.shape[2]/dz_pnm) + 1
        ref_color = 0
        
        for i in range(num_segments):
            z_pnm_0 = i*dz_pnm
            if z_pnm_0 > pnm_domain.shape[2]-1: continue
        
            z_pnm_1 = min(z_pnm_0 + dz_pnm, pnm_domain.shape[2])
            
            test_volume = sim_domain[:,:,z_pnm_0:z_pnm_1]
            label = sklabel(test_volume, connectivity = 2)
            num_pores = label.max()
            label[np.where(label>0)] = label[np.where(label>0)] + ref_color
            pnm_domain[:, :, z_pnm_0:z_pnm_1] = label
            ref_color = ref_color + num_pores
    
    bb = ndimage.find_objects(pnm_domain>0)[0]
    pnm_domain = pnm_domain[bb]
    pnm_domain.tofile(dest_PNM)