コード例 #1
0
    def test_local_minima(self):
        "local minima for various data types"

        data = np.array([[10,  11,  13,  14,  14,  15,  14,  14,  13,  11],
                         [11,  13,  15,  16,  16,  16,  16,  16,  15,  13],
                         [13,  15,  40,  40,  18,  18,  18,  60,  60,  15],
                         [14,  16,  40,  40,  19,  19,  19,  60,  60,  16],
                         [14,  16,  18,  19,  19,  19,  19,  19,  18,  16],
                         [15,  16,  18,  19,  19,  20,  19,  19,  18,  16],
                         [14,  16,  18,  19,  19,  19,  19,  19,  18,  16],
                         [14,  16,  80,  80,  19,  19,  19, 100, 100,  16],
                         [13,  15,  80,  80,  18,  18,  18, 100, 100,  15],
                         [11,  13,  15,  16,  16,  16,  16,  16,  15,  13]],
                        dtype=np.uint8)
        data = 100 - data
        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)
        for dtype in [np.uint8, np.uint64, np.int8, np.int64]:
            data = data.astype(dtype)
            out = extrema.local_minima(data)

            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype
コード例 #2
0
    def test_extrema_float(self):
        """Specific tests for float type."""
        # Copied from old unit test for local_maxma
        image = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32)
        inverted_image = 1.0 - image
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.bool)

        # Test for local maxima with automatic step calculation
        result = extrema.local_maxima(image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)

        # Test for local minima with automatic step calculation
        result = extrema.local_minima(inverted_image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)
コード例 #3
0
 def test_constant(self):
     """Test behaviour for 'flat' images."""
     const_image = np.full((7, 6), 42, dtype=np.uint8)
     expected = np.zeros((7, 6), dtype=np.uint8)
     for dtype in self.supported_dtypes:
         const_image = const_image.astype(dtype)
         # test for local maxima
         result = extrema.local_maxima(const_image)
         assert_equal(result, expected)
         # test for local minima
         result = extrema.local_minima(const_image)
         assert_equal(result, expected)
コード例 #4
0
    def test_extrema_float(self):
        "specific tests for float type"
        data = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32)
        inverted_data = 1.0 - data

        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.uint8)

        # test for local maxima with automatic step calculation
        out = extrema.local_maxima(data)
        error = diff(expected_result, out)
        assert error < eps

        # test for local minima with automatic step calculation
        out = extrema.local_minima(inverted_data)
        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_maxima(data, 0.003)
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.uint8)

        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_minima(inverted_data, 0.003)
        error = diff(expected_result, out)
        assert error < eps
コード例 #5
0
    def test_local_extrema_uniform(self):
        "local extrema tests for uniform arrays with various data types"

        data = np.full((7, 6), 42, dtype=np.uint8)

        expected_result = np.zeros((7, 6), dtype=np.uint8)

        for dtype in [np.uint8, np.uint64, np.int8, np.int64]:
            data = data.astype(dtype)

            # test for local maxima
            out = extrema.local_maxima(data)
            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype

            # test for local minima
            out = extrema.local_minima(data)
            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype
コード例 #6
0
    def test_extrema_float(self):
        """Specific tests for float type."""
        # Copied from old unit test for local_maxma
        image = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32
        )
        inverted_image = 1.0 - image
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.bool
        )

        # Test for local maxima with automatic step calculation
        result = extrema.local_maxima(image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)

        # Test for local minima with automatic step calculation
        result = extrema.local_minima(inverted_image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)
コード例 #7
0
def local_minima_seeds(image_data):
    """Create seed locations which are local minimas of the original image.


    Parameters
    ----------
    image_data : ndarray

    Returns
    -------
    list of ndarray
    """

    seeds = []
    if image_data.dtype == np.bool:

        return distance_transform_seeds(image_data)
    else:
        skmax = extrema.local_minima(image_data)
        seeds = np.transpose(np.nonzero(skmax))

        return seeds
コード例 #8
0
ファイル: test_extrema.py プロジェクト: ahojnnes/scikit-image
    def test_extrema_float(self):
        "specific tests for float type"
        data = np.array([[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14,
                          0.14, 0.13, 0.11],
                         [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16,
                          0.16, 0.15, 0.13],
                         [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18,
                          0.60, 0.60, 0.15],
                         [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19,
                          0.60, 0.60, 0.16],
                         [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19,
                          0.19, 0.18, 0.16],
                         [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19,
                          0.19, 0.18, 0.16],
                         [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19,
                          0.19, 0.18, 0.16],
                         [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19,
                          1.0,  1.0, 0.16],
                         [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18,
                          1.0, 1.0, 0.15],
                         [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16,
                          0.16, 0.15, 0.13]],
                        dtype=np.float32)
        inverted_data = 1.0 - data

        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)

        # test for local maxima with automatic step calculation
        out = extrema.local_maxima(data)
        error = diff(expected_result, out)
        assert error < eps

        # test for local minima with automatic step calculation
        out = extrema.local_minima(inverted_data)
        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_maxima(data, 0.003)
        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)

        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_minima(inverted_data, 0.003)
        error = diff(expected_result, out)
        assert error < eps