コード例 #1
0
def plot(imag):
    # Invert the horse image
    # image = plt.imread("cheval.png", 'L')/255
    image = rgb_to_gray(1 - plt.imread(imag))
    print(image.shape)
    print(image[100:105, 115:117])
    print(type(image))

    # perform skeletonization
    # skeleton = skeletonize(image)
    skeleton = local_maxima(image)

    # display results
    fig, axes = plt.subplots(nrows=1,
                             ncols=2,
                             figsize=(8, 4),
                             sharex=True,
                             sharey=True,
                             subplot_kw={'adjustable': 'box'})

    ax = axes.ravel()

    ax[0].imshow(image, cmap=plt.cm.gray)
    ax[0].axis('off')
    ax[0].set_title('original', fontsize=20)

    ax[1].imshow(skeleton, cmap=plt.cm.gray)
    ax[1].axis('off')
    ax[1].set_title('skeleton', fontsize=20)

    fig.tight_layout()
    plt.show()
コード例 #2
0
def pmwatershed(I,estRad,smCoef,fgThr,frg):
    fwhm = estRad # full width at half maximum 
    sigma = fwhm/2.355
    J = imlogfilt(I,sigma)
    S = imgaussfilt(I,smCoef)
    M =  S > fgThr
    diskCoef = (1-frg)*fwhm/4+frg
    d = disk(2*int(diskCoef)+1)
    lm = local_maxima(J,selem=d)*M
    markers = label(lm)
    labels = watershed(-S, markers[0], mask=M, watershed_line=True)
    return labels > 0
コード例 #3
0
    def _get_nucleation_points(self, image):
        """Set distance and angle thresholds for fibre iterator"""

        # Get global maxima for smoothed distance matrix
        maxima = local_maxima(image,
                              connectivity=self.nuc_radius,
                              allow_borders=True)
        nuc_node_coord = reduce_coord(
            np.argwhere(maxima * image >= self.nuc_thresh),
            image[np.where(maxima * image >= self.nuc_thresh)], self.r_thresh)

        return nuc_node_coord
コード例 #4
0
def _peak_search_skimage(image, **kwargs):
    '''Default peak detection method:
        skimage.morphology.get_m**ima (either minima or maxima)
    Since skimage doesn't handle masked arrays, the masking is a bit of a bodge
    job here. The basic plan is as follows:
        * Set the area of the image covered by the mask to a value that cannot include a maxima (or minima, as appropriate)
        * Search for peak coordinates
        * Check if, after rounding, any of the peaks are outside the image dimensions
        * Check if, after rounding, any of the peaks are extremely close to the mask
    
    Since the mask is a ahrd-edged area, if there is even a slight rise just
    outside it, spurious peaks can be detected. Therefore, we automatically reject
    any peaks for a short distance outside the actual mask
    
    '''
    connectivity = 2
    get_maxima = kwargs.get("maxima", True)
    mask = kwargs.get("mask", np.zeros(image.shape, dtype=bool))
    image_copy = image.copy()
    if get_maxima:
        image_copy[mask] = np.nanmin(image_copy)
        regionalMaxMap = morphology.local_maxima(image_copy,
                                                 connectivity=connectivity,
                                                 allow_borders=True)
    else:
        image_copy[mask] = np.nanmax(image_copy)
        regionalMaxMap = morphology.local_minima(image_copy,
                                                 connectivity=connectivity,
                                                 allow_borders=True)
    labelled_max = measure.label(regionalMaxMap, connectivity=connectivity)
    regions = measure.regionprops(labelled_max)
    peak_coords = np.zeros(shape=(len(regions), 2), dtype=np.int)

    distance_from_mask = distance_transform_cdt(image_copy * (1 - mask))

    for i, props in enumerate(regions):
        y0, x0 = props.centroid
        peak = np.array([y0, x0])

        # ensure that there are no peaks off the map (due to rounding)
        peak[peak < 0] = 0
        for j in range(image_copy.ndim):
            if peak[j] > image_copy.shape[j]:
                peak[j] = image_copy.shape[j] - 1

        peak_index = tuple(
            np.round(peak, 0).astype(int)
        )  # indexing with a floating point array sucks, so convert to a more convenient form
        if distance_from_mask[peak_index] > 2 * connectivity:
            peak_coords[i, :] = peak
    return peak_coords
コード例 #5
0
def Mask_Galaxies(data, lim):
    limg = np.arcsinh(data)
    limg_N = limg / limg.max()
    #print (max(limg_N.flatten()))            
    for i in range(0,len(limg_N[0])):
        for j in range(0,len(limg_N)):
            if limg_N[j][i] < lim :
                limg_N[j][i] =0
    #low = np.percentile(limg_N, low_percentile)
    #high = np.percentile(limg_N, high_percentile)
    #opt_img  = skie.exposure.rescale_intensity(limg_N, in_range=(low,high))
    lm = morph.local_maxima(limg_N)
    x1, y1 = np.where(lm.T == True)
    return limg,limg_N, (x1,y1)
コード例 #6
0
def new_branches(image, coord, ring_filter, max_thresh=0.2):
    """Find local maxima in image within max_thresh of coord,
    excluding pixels in ring filter"""

    filtered = image * ring_filter
    branch_coord = np.argwhere(
        local_maxima(filtered) * image >= max_thresh)
    branch_coord = reduce_coord(
        branch_coord, image[branch_coord[:, 0], branch_coord[:, 1]])

    n_branch = branch_coord.shape[0]
    branch_vector = np.tile(coord, (n_branch, 1)) - branch_coord
    branch_r = np.sqrt(np.sum(branch_vector**2, axis=1))

    return branch_coord, branch_vector, branch_r
コード例 #7
0
 def accumfindcenters(self,acc, senstivity):
     accumMatrix = np.absolute(acc) # accumulator array
     sigma  = 0.5
     kernel = int(2*np.ceil(2*sigma)+1)
     accumMatrix = cv2.GaussianBlur(accumMatrix , (kernel,kernel),sigmaX=0.5)
     senstivity = 0.93 # default
     Hd = cv2.medianBlur(accumMatrix.astype('float32'),5)
     accumThresh = 1-senstivity
     suppThreshold = np.max(accumThresh-  np.spacing(accumThresh),0)
     Hd = extrema.h_maxima(Hd, suppThreshold)
     bw = (local_maxima(Hd)).astype(int)
     label_img = label(bw, connectivity=bw.ndim)
     s = regionprops(label_img, intensity_image=accumMatrix)
     center = np.empty([len(s),2])
     metric = np.empty([len(s),1])
     for index,i in enumerate(s):
       center[index] = tuple((np.array(s[index].centroid)).astype(int))
       metric[index] = Hd[tuple((np.array(s[index].centroid)).astype(int))]
     return center, metric
コード例 #8
0
ファイル: watershed.py プロジェクト: zhengpuas47/MERlin
def extract_seeds(seedImageStackIn: np.ndarray) -> np.ndarray:
    """Determine seed positions from the input images.

    The initial seeds are determined by finding the regional intensity maximums
    after erosion and filtering with an adaptive threshold. These initial
    seeds are then expanded by dilation.

    Args:
        seedImageStackIn: a 3 dimensional numpy array arranged as (z,x,y)
    Returns: a boolean numpy array with the same dimensions as seedImageStackIn
        where a given (z,x,y) coordinate is True if it corresponds to a seed
        position and false otherwise.
    """
    seedImages = seedImageStackIn.copy()

    seedImages = ndimage.grey_erosion(
        seedImages,
        footprint=ndimage.morphology.generate_binary_structure(3, 1))
    seedImages = np.array([
        cv2.erode(x, diskStruct, borderType=cv2.BORDER_REFLECT)
        for x in seedImages
    ])

    thresholdFilterSize = int(2 * np.floor(seedImages.shape[1] / 16) + 1)
    seedMask = np.array([
        x < 1.1 * filters.threshold_local(
            x, thresholdFilterSize, method='mean', mode='nearest')
        for x in seedImages
    ])

    seedImages[seedMask] = 0

    seeds = morphology.local_maxima(seedImages, allow_borders=True)

    seeds = ndimage.morphology.binary_dilation(
        seeds, structure=ndimage.morphology.generate_binary_structure(3, 1))
    seeds = np.array([
        ndimage.morphology.binary_dilation(
            x, structure=morphology.diamond(28)[9:48, 9:48]) for x in seeds
    ])

    return seeds
コード例 #9
0
# Generate an initial image with two overlapping circles
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 20.7, 24.7
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)

# Now we want to separate the two objects in image
# Generate the markers as local maxima of the distance to the background
distance = ndi.distance_transform_cdt(image)
imageio.imwrite("dm.png", distance)
# local_maxi = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
#                            labels=image)
local_maxi = morphology.local_maxima(distance)
markers = ndi.label(local_maxi, np.ones((3, 3)))[0]
labels = watershed(-distance, markers, mask=image)
plt.imshow(markers)
plt.show()

fig, axes = plt.subplots(ncols=3, figsize=(9, 3), sharex=True, sharey=True)
ax = axes.ravel()

ax[0].imshow(image, cmap=plt.cm.gray, interpolation='nearest')
ax[0].set_title('Overlapping objects')
ax[1].imshow(-distance, cmap=plt.cm.gray, interpolation='nearest')
ax[1].set_title('Distances')
ax[2].imshow(labels, cmap=plt.cm.nipy_spectral, interpolation='nearest')
ax[2].set_title('Separated objects')
コード例 #10
0
Image_by_reconstruction_open_close_util_uint8 = util.invert(
    Image_by_reconstruction_open_close_util.astype(np.uint8))
#cv2.imshow( "dilation by util", Image_by_reconstruction_open_close_util_uint8 );
print("dilation by util")
plt.imshow(Image_by_reconstruction_open_close_util_uint8)
plt.show()

# Regional max

#RegMax_ndi = ndi.filters.maximum_filter(Image_by_reconstruction_open_close_util, footprint = np.ones((3,3),dtype=np.float64))
#RegMax_ndi = (Image_by_reconstruction_open_close_util == RegMax_ndi)
#print("Regional max by ndi")
#plt.imshow(RegMax_ndi)
#plt.show()

RegMax_skimage = local_maxima(Image_by_reconstruction_open_close_util_uint8)
#cv2.imshow( "Regional max by skimage", RegMax_skimage );
RegMax_skimage = RegMax_skimage.astype(bool)
print("Regional max by skimage")
plt.imshow(RegMax_skimage)
plt.show()

# Remove small objects from binary image

RegMax_remove_skimage = remove_small_objects(RegMax_skimage, min_size=5)
#cv2.imshow( "Regional max remove by skimage", RegMax_remove_skimage.astype(np.uint8) );
print("Regional max remove by skimage")
plt.imshow(RegMax_remove_skimage)
plt.show()

resta = np.logical_xor(RegMax_skimage, RegMax_remove_skimage)
コード例 #11
0
def getOMaps(Fxy):
    bw = Fxy > 0.1
    bw = morphology.remove_small_objects(bw, 8)
    Fxy[(bw == 0)] = 0
    Fxy = scipy.signal.medfilt2d(Fxy, kernel_size=3)

    # Fxy = np.delete( Fxy, [26,27,28,29,48,49,50], 0)
    Fxy = np.delete(Fxy, [26, 27, 28, 29, 48, 49, 50], 0)
    Fxy = np.delete(Fxy, [20, 21], 1)

    H = 0.2 * np.matrix(' 0 1 0; 1 1 1; 0 1 0 ')
    tFxy = scipy.ndimage.correlate(Fxy, H, mode='constant')

    rng = np.linspace(0, 3.0, num=100)

    alpha = scipy.stats.norm(0.94, 0.17).pdf(rng)
    alpha = np.max(alpha)

    sit = scipy.stats.norm(0.94, 0.17).pdf(tFxy)
    sit = sit / alpha

    beta = scipy.stats.norm(1.6, 0.2).pdf(rng)
    beta = np.max(beta)

    stand = scipy.stats.norm(1.6, 0.2).pdf(tFxy)
    stand = stand / beta

    tFxy[(sit < 0.5) & (stand < 0.5)] = 0
    bw = tFxy > 0.1
    bw = morphology.remove_small_objects(bw, 8)
    tFxy[(bw == 0)] = 0

    labels = label(tFxy, neighbors=8)
    regions = regionprops(labels, coordinates='rc')

    num = len(regions)

    occlocs = []
    occarea = []
    occMAL = []
    occhgt = []

    if num > 0:
        I = toimage(tFxy)
        strel = morphology.disk(1)
        Ie = morphology.erosion(I, strel)
        Id = morphology.dilation(I, strel)

        Iobr = morphology.reconstruction(Ie, Id)
        Fgm = morphology.local_maxima(Iobr)
        # print( "Fgm = ", Fgm)
        Iobr[(Fgm == 0)] = 0

        labels = label(Fgm)
        regions = regionprops(labels, tFxy, coordinates='rc')

        num = len(regions)
        if num > 0:
            for props in regions:
                occlocs.append(props.centroid)
                # occarea.append( props.area )
                # occMAL.append( props.major_axis_length )
                occhgt.append(props.max_intensity)

    return num, occlocs, occhgt
コード例 #12
0
print("Edge detection")
sobel = filters.sobel(Contrast_image)
io.imshow(sobel)
plt.figure()

# Gradient magnitude 

Sobel_gradient_array = filters.rank.gradient(sobel,disk(1))

# Compute the opening-by-reconstruction (erode)
print("Compute the opening-by-reconstruction (erode)")
Image_erosion = erosion(Contrast_image,disk(1))
Image_by_reconstruction_opening = reconstruction(Image_erosion,Contrast_image)
io.imshow(Image_by_reconstruction_opening)
plt.figure()

# Compute the closing-by-reconstruction (dilation)
print("Compute the closing-by-reconstruction (dilation)")
Image_dilation = dilation(Image_by_reconstruction_opening,disk(1))
Image_by_reconstruction_closing = reconstruction(util.invert(Image_dilation),util.invert(Image_by_reconstruction_opening))
Image_by_reconstruction_closing = util.invert(Image_by_reconstruction_closing)
io.imshow(Image_by_reconstruction_closing)
plt.figure()

# Regional max

print("REGIONAL MAX")

Regional_max = local_maxima(Image_by_reconstruction_closing)
io.imshow(Regional_max)
コード例 #13
0
def find_focal_points(image,
                      scope='local',
                      maxima_areas='large',
                      local_maxima_threshold=None,
                      num_points=None):
    """
    Finds the 'focal_points' of a model, given a low resolution CAM. Has two modes: a 'local' scope and a 'global' one.

    If a 'local' scope is selected, the function looks for local maxima in the CAM. Due to the high sensitivity of the
    algorithm finding the local maxima, usually a large number of maxima is identified (which is, in most cases,
    undesirable. An interest_threshold can be selected that filters out possibly unwanted maxima (i.e. maxima whose
    intensity is lower than the threshold). Due to the resizing of the CAM, these local maxima produce large areas in
    the new image. If this is not desired, the option maxima_areas='small' should be selected, which "skeletonizes" the
    large areas to shrink them.

    The 'global' scope looks for global maxima in the CAM. This is accompanied by the parameter num_points, which
    designates the number of points returned by the function.

    :param image: An input image. Ideally this should be a low resolution CAM.
    :param scope: Can either be 'local' or 'global'. A 'local' scope looks for local maxima in the image, while a
                  'global' scope looks for global ones.
    :param maxima_areas: Can either be 'large' or 'small', depending on whether or not we want larger or smaller areas.
                         Only relevant for 'local' scopes.
    :param local_maxima_threshold: A float that filters out any local maxima that are below the threshold. Its default
                                   value is the average of the lowest-intensity local maxima with the highest-intensity
                                   one. Only relevant for 'local' scopes.
    :param num_points: An integer that specifies the number of points with the maximum intensity.
                       Only relevant for 'global' scopes.
    :return: A list of tuples, each containing the x and y coordinates of the 'focal points' in the input CAM.
    """

    # Global scope: looks for 'num_points' global maxima in the input image.
    if scope == 'global':

        # If 'num_points' is not defined, picks the square root of one of its dimensions:
        # e.g. for a 224x224 image: num_points = sqrt(224) = 15
        if num_points:
            if not isinstance(num_points, int):
                raise TypeError('num_points can only take integer values')
        else:
            num_points = int(round(np.sqrt(opt.im_size)))

        # Resizes the image to the desired size  and returns the coordinates of the top 'num_points' pixels that have
        # the largest values. They are cast as python's default 32-bit integers to be compatible with SimpleITK's
        # ConnectedThreshold function. The two axes are also reversed.
        top_points = np.argpartition(resize(image).ravel(),
                                     -num_points)[-num_points:]
        return [(int(x % opt.im_size), int(x // opt.im_size))
                for x in top_points]

    # Local scope: looks for local maxima in the input image.
    elif scope == 'local':

        # Identifies the image's local maxima.
        candidate_points = morphology.local_maxima(image).astype(bool)

        # Because of the high sensitivity of scikit-image's morphology.local_maxima function, it is often desired to
        # filter some of the local maxima out via a threshold. If this is not passed explicitly the average of the
        # local maxima with the minimum and maximum intensities is used.
        if not isinstance(local_maxima_threshold, float):
            local_maxima_threshold = (image[candidate_points].max() +
                                      image[candidate_points].min()) / 2

        # Any local maxima that, whose intensity fails to exceed the threshold is ignored.
        focal_points = candidate_points * image > local_maxima_threshold

        # Resizes the map of the local maxima to the desired dimensions. This results in the enlargement of the areas
        # of the each maxima. If this is undesired, as indicated by the option maxima_areas='small', scikit-image's
        # morphology.skeletonize is applied, which shrinks the maxima areas.
        focal_points = resize(focal_points.astype(float),
                              resample_method='nearest')
        if maxima_areas not in ('small', 'large'):
            raise ValueError("maxima_areas can either be 'small' or 'large'")
        elif maxima_areas == 'small':
            focal_points = morphology.skeletonize(focal_points)

        # Finally, the coordinates of the maxima are returned. They are cast as python's default 32-bit integers to be
        # compatible with SimpleITK's ConnectedThreshold function. The two axes are also reversed.
        focal_point_coods = np.where(focal_points)
        return [(int(focal_point_coods[1][i]), int(focal_point_coods[0][i]))
                for i in range(len(focal_point_coods[0]))]