コード例 #1
0
 def combine_sensor_sources(self):
     other = segmentation.expand_labels(self.other_robot_image(),
                                        distance=2.0 * self.safety_dist /
                                        self.raw_map.info.resolution)
     image = segmentation.expand_labels(self.map_image,
                                        distance=self.safety_dist /
                                        self.raw_map.info.resolution)
     scan_image = segmentation.expand_labels(self.scan_image(),
                                             distance=self.safety_dist /
                                             self.raw_map.info.resolution)
     image = gaussian_filter(image + other + scan_image, 1)
     image[image > 100] = 100
     image[image <= 0] = 0
     return image
コード例 #2
0
ファイル: bloodsmear.py プロジェクト: yimencc/RBC_detect
def area_extract(array, coordinates, otsu_bins=20, expand_distance=5):
    h_upper, w_upper = array.shape
    labeled_area = np.zeros_like(array)
    # Extracting the available area from the given boxes
    for lbl, (x, y, w, h, _) in enumerate(coordinates):
        # Decide weather all the area inside the box is available
        # Notice: the 'lbl' used here is different from the 'label' used in object annotating
        # during the object recognition processing, but only for the pixel labeling.
        xmin, xmax = np.clip(x - w / 2, 0,
                             None).astype(int), np.clip(x + w / 2, 0,
                                                        w_upper).astype(int)
        ymin, ymax = np.clip(y - h / 2, 0,
                             None).astype(int), np.clip(y + h / 2, 0,
                                                        h_upper).astype(int)

        # Extract available areas from boxes
        strict_area = array[ymin:ymax, xmin:xmax]
        otsu_thres = threshold_otsu(strict_area, nbins=otsu_bins)

        # Labeling available areas
        y_index, x_index = (strict_area >= otsu_thres).nonzero()
        labeled_area[y_index + ymin, x_index + xmin] = lbl + 1

    # Expanding the extracted areas
    expanded_labels = expand_labels(labeled_area, distance=expand_distance)
    # Re-thresholding of the expanded areas using Otsu-threshold
    for lbl in range(1, np.max(expanded_labels).astype(int)):
        lbl_area = (array - np.min(array)) * (expanded_labels == lbl)
        regions = np.digitize(lbl_area, bins=threshold_multiotsu(lbl_area))
        expanded_labels[regions == 1] = -lbl
        expanded_labels[regions == 2] = lbl
    return expanded_labels
コード例 #3
0
ファイル: lcfcn.py プロジェクト: ElementAI/LCFCN
def convert(img, mask, enlarge=0):
    if enlarge != 0:
        mask = expand_labels(mask, enlarge).astype('uint8')
    m = label2rgb(mask, bg_label=0)
    m = segmentation.mark_boundaries(m, mask.astype('uint8'))
    i = 0.5 * np.array(img) / 255.
    ind = m != 0
    i[ind] = m[ind] 

    return i
コード例 #4
0
def extract_ring(labels):
    #safety margin: 3
    #expansion: 7

    labels_expanded_3 = expand_labels(labels, distance=3)
    labels_expanded_13 = expand_labels(labels, distance=10)
    labels_ring = np.zeros(np.shape(labels))
    labels_ring_stack = []

    for label in range(
            1,
            np.max(labels) + 1
    ):  #iterate through each nucleus, starting from index 1 as label 0 is background
        mask_nucleus_expanded_3 = labels_expanded_3 == label  #boolean mask where nucleus is
        mask_nucleus_expanded_13 = labels_expanded_13 == label  #boolean mask where extended region is
        mask_ring = np.logical_and(
            mask_nucleus_expanded_13,
            ~mask_nucleus_expanded_3)  #the ring is where the nucleus is NOT
        labels_ring[mask_ring] = label

    return labels_ring.astype(int)
コード例 #5
0
ファイル: FrameLbl.py プロジェクト: alonyan/oyLabImaging
    def __init__(self,
                 frame=None,
                 MD=None,
                 pth=None,
                 Pos=None,
                 acq=None,
                 Zindex=0,
                 register=True,
                 periring=False,
                 periringsize=5,
                 NucChannel='DeepBlue',
                 cytoplasm=False,
                 CytoChannel=None,
                 zernike=False,
                 segment_type='watershed',
                 **kwargs):

        if pth is None and MD is not None:
            pth = MD.base_pth

        if any([Pos is None, pth is None, frame is None]):
            raise ValueError('Please input path, position, and frame')

        self.pth = pth

        if MD is None:
            MD = Metadata(pth)

        if MD().empty:
            raise AssertionError('No metadata found in supplied path')

        if Pos not in MD.posnames:
            raise AssertionError('Position does not exist in dataset')
        self.posname = Pos

        if frame not in MD.frames:
            raise AssertionError('Frame does not exist in dataset')
        self.frame = frame

        self._seg_fun = segmentation.segtype_to_segfun(segment_type)

        self.channels = MD.unique('Channel', Position=Pos, frame=frame)
        self.acq = MD.unique('acq', Position=Pos, frame=frame)

        self.XY = MD().at[MD.unique('index', Position=Pos, frame=frame)[0],
                          'XY']
        self._pixelsize = MD()['PixelSize'][0]

        NucChannel = NucChannel if isinstance(NucChannel,
                                              list) else [NucChannel]
        CytoChannel = CytoChannel if isinstance(CytoChannel,
                                                list) else [CytoChannel]

        Data = {}
        for ch in self.channels:
            Data[ch] = np.squeeze(
                MD.stkread(Channel=ch,
                           frame=frame,
                           Position=Pos,
                           Zindex=Zindex,
                           verbose=False))
            assert Data[
                ch].ndim == 2, "channel/position/frame/Zindex did not return unique result"

        self.imagedims = np.shape(Data[NucChannel[0]])

        nargs = self._seg_fun.__code__.co_argcount
        args = [self._seg_fun.__code__.co_varnames[i] for i in range(2, nargs)]
        defaults = list(self._seg_fun.__defaults__)
        input_dict = {args[i]: defaults[i] for i in range(0, nargs - 2)}
        input_dict = {
            **input_dict,
            **kwargs, 'nucchannel': NucChannel,
            'cytochannel': CytoChannel
        }

        self._seg_params = input_dict

        try:
            imgCyto = np.sum([Data[ch] for ch in CytoChannel], axis=0)
        except:
            imgCyto = ''

        imgNuc = np.sum([Data[ch] for ch in NucChannel], axis=0)

        L = self._seg_fun(img=imgNuc, imgCyto=imgCyto, **kwargs)

        props = measure.regionprops(L, intensity_image=Data[NucChannel[0]])

        props_df = regionprops_to_df(props)
        props_df.drop(['mean_intensity', 'max_intensity', 'min_intensity'],
                      axis=1,
                      inplace=True)
        if zernike:

            L1 = [
                list(Zernike.coeff_fast(stats.zscore(r.intensity_image)))[1]
                for r in props
            ]
            K1 = [
                list(Zernike.coeff_fast(stats.zscore(r.intensity_image)))[2]
                for r in props
            ]
            props_df['L'] = L1
            props_df['K'] = K1

        for ch in self.channels:
            props_channel = measure.regionprops(L, intensity_image=Data[ch])
            mean_channel = [r.mean_intensity for r in props_channel]
            max_channel = [r.max_intensity for r in props_channel]
            min_channel = [r.min_intensity for r in props_channel]
            Ninty_channel = [
                np.percentile(r.intensity_image, 90) for r in props_channel
            ]
            median_channel = [
                np.median(r.intensity_image) for r in props_channel
            ]

            props_df['mean_' + ch] = mean_channel
            props_df['max_' + ch] = max_channel
            props_df['min_' + ch] = min_channel
            props_df['90th_' + ch] = Ninty_channel
            props_df['median_' + ch] = median_channel

            if zernike:
                c1 = [
                    list(Zernike.coeff_fast(stats.zscore(
                        r.intensity_image)))[0] for r in props_channel
                ]
                props_df['zernike_' + ch] = c1

        if periring:
            #from skimage.morphology import disk, dilation
            from skimage.segmentation import expand_labels
            Lperi = expand_labels(L, distance=periringsize) - L

            for ch in self.channels:
                props_channel = measure.regionprops(Lperi,
                                                    intensity_image=Data[ch])
                mean_channel = [r.mean_intensity for r in props_channel]
                max_channel = [r.max_intensity for r in props_channel]
                min_channel = [r.min_intensity for r in props_channel]
                Ninty_channel = [
                    np.percentile(r.intensity_image, 90) for r in props_channel
                ]
                median_channel = [
                    np.median(r.intensity_image) for r in props_channel
                ]

                props_df['mean_' + ch + '_periring'] = mean_channel
                props_df['max_' + ch + '_periring'] = max_channel
                props_df['min_' + ch + '_periring'] = min_channel
                props_df['90th_' + ch + '_periring'] = Ninty_channel
                props_df['median_' + ch + '_periring'] = median_channel

        if cytoplasm:
            pass

        if register:
            ind = MD.unique('index',
                            Position=Pos,
                            frame=frame,
                            Channel=NucChannel)
            Tforms = MD().at[ind[0], 'driftTform']
            if Tforms is not None:
                for i in np.arange(props_df.index.size):
                    props_df.at[i, 'centroid'] = tuple(
                        np.add(props_df.at[i, 'centroid'], Tforms[6:8]))
                    props_df.at[i, 'weighted_centroid'] = tuple(
                        np.add(props_df.at[i, 'weighted_centroid'],
                               Tforms[6:8]))
                #print('\nRegistered centroids')
            else:
                print('No drift correction found')

        self.regionprops = props_df
コード例 #6
0
					
					preds[idx] = count
					lbls[idx] = label_arr[idx]
					
					# Analysis of result
					num_img = num_img + 1
					dist = np.abs(np.subtract(count, label_arr[idx]))
					dist_sum = dist_sum + dist
					dev = 1 - np.divide(count, label_arr[idx])
					dev_sum = dev_sum + np.abs(dev)
					if round(count)==round(label_arr[idx]):
						cor_sum = cor_sum + 1

					# Show the segmentation
					if show_processed_image:
						expanded = expand_labels(seg1, distance=8)
						fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(9, 5),
												 sharex=True, sharey=True)

						color1 = label2rgb(seg1, image=thresh_img, bg_label=0)
						axes[0].imshow(color1)
						axes[0].set_title('Sobel+Watershed')

						color2 = label2rgb(expanded, image=thresh_img, bg_label=0)
						axes[1].imshow(color2)
						axes[1].set_title('Expanded labels')

						for a in axes:
							a.axis('off')
						fig.tight_layout()
						plt.show()