コード例 #1
0
 def test_calc_quat(self):
     v0 = [0., 0., 100.]
     vel = tile(v0, (1000, 1))
     rate = 100
     out = quat.calc_quat(np.deg2rad(vel), [0., 0., 0.], rate, 'sf')
     result = out[-1:]
     correct = [[-0.76040597, 0., 0., 0.64944805]]
     error = norm(result - correct)
     self.assertTrue(error < self.delta)
コード例 #2
0
 def test_calc_quat(self):
     v0 = [0., 0., 100.]
     vel = tile(v0, (1000,1))
     rate = 100
     out = quat.calc_quat(np.deg2rad(vel), [0., 0., 0.], rate, 'sf')
     result = out[-1:]
     correct =  [[-0.76040597, 0., 0., 0.64944805]]
     error = norm(result - correct)
     self.assertTrue(error < self.delta)
コード例 #3
0
 def test_calc_angvel(self):
     rate = 1000
     t = np.arange(0,10,1./rate)
     x = 0.1 * np.sin(t)
     y = 0.2 * np.sin(t)
     z = np.zeros_like(t)
     
     q = np.column_stack( (x,y,z) )
     vel = quat.calc_angvel(q, rate, 5, 2)
     qReturn = quat.calc_quat(vel, q[0], rate, 'sf' )
     error = np.max(np.abs( q-qReturn[:,1:] ))
     self.assertTrue(error < 1e3 )
コード例 #4
0
    def test_calc_angvel(self):
        rate = 1000
        t = np.arange(0, 10, 1. / rate)
        x = 0.1 * np.sin(t)
        y = 0.2 * np.sin(t)
        z = np.zeros_like(t)

        q = np.column_stack((x, y, z))
        vel = quat.calc_angvel(q, rate, 5, 2)
        qReturn = quat.calc_quat(vel, q[0], rate, 'sf')
        error = np.max(np.abs(q - qReturn[:, 1:]))
        self.assertTrue(error < 1e3)
コード例 #5
0
def calculate_head_orientation(angular_velocity_data, frequency):
    """
    calculates the orientation of the head according to given angular velocities it undergoes as measured by a sensor,
    with the assumption that the head is perfectly aligned with the global coordinate system in the beginning
    :param angular_velocity_data: angular velocities tracked by a sensor
    :param frequency: sample rate of the sensor
    :return: the orientations of the head at each point in time
    """
    # calculate the quaternions describing the position of the head according to the angular velocities it underwent.
    head_orientation = quat.calc_quat(angular_velocity_data, [0, 0, 0],
                                      rate=frequency,
                                      CStype='bf')

    return head_orientation
コード例 #6
0
 def test_view_orientation(self):
     omega = np.r_[0, 10, 10]     # [deg/s]
     duration = 2
     rate = 100
     q0 = [1, 0, 0, 0]
     out_file = 'demo_patch.mp4'
     title_text = 'Rotation Demo'
     
     ## Calculate the orientation
     dt = 1./rate
     num_rep = duration*rate
     omegas = np.tile(omega, [num_rep, 1])
     quaternion = quat.calc_quat(omegas, q0, rate, 'sf')
         
     view.orientation(quaternion, out_file, 'Well done!')        
コード例 #7
0
ファイル: test_view.py プロジェクト: belm0/scikit-kinematics
    def test_view_orientation(self):
        omega = np.r_[0, 10, 10]  # [deg/s]
        duration = 2
        rate = 100
        q0 = [1, 0, 0, 0]
        out_file = 'demo_patch.mp4'
        title_text = 'Rotation Demo'

        ## Calculate the orientation
        dt = 1. / rate
        num_rep = duration * rate
        omegas = np.tile(omega, [num_rep, 1])
        quaternion = quat.calc_quat(omegas, q0, rate, 'sf')

        view.orientation(quaternion, out_file, 'Well done!')
コード例 #8
0
ファイル: imu_calc.py プロジェクト: Kojon74/PosFix
def analytical(
        R_initialOrientation=np.eye(3),
        omega=np.zeros((5, 3)),
        initialPosition=np.zeros(3),
        initialVelocity=np.zeros(3),
        accMeasured=np.column_stack((np.zeros((5, 2)), 9.81 * np.ones(5))),
        rate=100):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]
    vel : ndarray(N,3)
        Velocity in space [m/s]

    Example
    -------
     
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    if omega.ndim == 1:
        raise ValueError('The input to "analytical" requires matrix inputs.')

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = constants.g
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)

    q_initial = rotmat.convert(R_initialOrientation, to='quat')

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    q_ref = quat.q_mult(q_initial, q0)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan * np.ones_like(accReSpace)
    pos = np.nan * np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:, ii] = cumtrapz(accReSpace[:, ii],
                              dx=1. / rate,
                              initial=initialVelocity[ii])
        pos[:, ii] = cumtrapz(vel[:, ii],
                              dx=1. / rate,
                              initial=initialPosition[ii])

    return (q, pos, vel)
コード例 #9
0
from skinematics import view, quat

# 2D Viewer -----------------
data = np.random.randn(100, 3)
t = np.arange(0, 2 * np.pi, 0.1)
x = np.sin(t)

# Show the data
view.ts(data)

# Let the user select data from the local workspace
view.ts(locals())

# 3-D Viewer ----------------
# Set the parameters
omega = np.r_[0, 10, 10]  # [deg/s]
duration = 2
rate = 100
q0 = [1, 0, 0, 0]
out_file = 'demo_patch.mp4'
title_text = 'Rotation Demo'

## Calculate the orientation
dt = 1. / rate
num_rep = duration * rate
omegas = np.tile(omega, [num_rep, 1])
q = quat.calc_quat(omegas, q0, rate, 'sf')

#orientation(q)
view.orientation(q, out_file, 'Well done!')