def _display_intermediate_steps(model_onnx, inputs): import onnxruntime print("[_display_intermediate_steps] BEGIN") if isinstance(model_onnx, str): import onnx model_onnx = onnx.load(model_onnx) for name, node in enumerate_model_initializers(model_onnx, add_node=True): print("INIT: {} - {}".format(name, _guess_type(node))) for out, node in enumerate_model_node_outputs(model_onnx, add_node=True): print('-') print("OUTPUT: {} from {}".format(out, node.name)) step = select_model_inputs_outputs(model_onnx, out) try: step_sess = onnxruntime.InferenceSession(step.SerializeToString()) except Exception as e: raise RuntimeError("Unable to load ONNX model with onnxruntime. " "Last added node is:\n{}".format(node)) from e for o in step_sess.get_inputs(): print("IN :", o) for o in step_sess.get_outputs(): print("OUT: ", o) if inputs: res = step_sess.run(inputs) print(res) print("[_display_intermediate_steps] END")
def _display_intermediate_steps(model_onnx, inputs, disable_optimisation): import onnxruntime print("[_display_intermediate_steps] BEGIN") if isinstance(model_onnx, str): import onnx model_onnx = onnx.load(model_onnx) for name, node in enumerate_model_initializers(model_onnx, add_node=True): print("INIT: {} - {}".format(name, _guess_type(node))) for out, node in enumerate_model_node_outputs(model_onnx, add_node=True): print('-') print("OUTPUT: {} from {}".format(out, node.name)) step = select_model_inputs_outputs(model_onnx, out) if (disable_optimisation and hasattr(onnxruntime, 'GraphOptimizationLevel')): opts = onnxruntime.SessionOptions() opts.graph_optimization_level = ( onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL) else: opts = None try: step_sess = onnxruntime.InferenceSession(step.SerializeToString(), sess_options=opts) except Exception as e: raise RuntimeError("Unable to load ONNX model with onnxruntime. " "Last added node is:\n{}".format(node)) from e for o in step_sess.get_inputs(): print("IN :", o) for o in step_sess.get_outputs(): print("OUT: ", o) if inputs: res = step_sess.run(inputs) print(res) print("[_display_intermediate_steps] END")