コード例 #1
0
ファイル: ICAize.py プロジェクト: dcunning11235/skymodel
def get_model(method, n=None, n_neighbors=None, max_iter=None, random_state=None, n_jobs=None, method_args=None):
    model = None

    kwargs = {}
    if method_args is not None:
        for arg_pair in method_args:
            arg_par = arg_pair.split('=')
            kwargs[arg_pair[0].trim()] = arg_pair[1].trim()

    if method == 'ICA':
        model = FastICA(whiten=True, **kwargs)
    elif method == 'ICAexp':
        model = FastICA(whiten=True, fun='exp', **kwargs)
    elif method == 'ICAcube':
        model = FastICA(whiten=True, fun='cube', **kwargs)
    elif method == 'PCA':
        model = PCA()
    elif method == 'SPCA':
        model = SparsePCA()
        if n_jobs is not None:
            model.n_jobs = n_jobs
    elif method == 'NMF':
        model = NMF(solver='cd')
    elif method == 'ISO':
        model = Isomap()
    elif method == 'KPCA':
        model = KernelPCA(kernel='rbf', fit_inverse_transform=False, gamma=1, alpha=0.0001)
    elif method == 'FA':
        #model = FactorAnalysis(svd_method='lapack') #(tol=0.0001, iterated_power=4)
        model = FactorAnalysis(tol=0.0001, iterated_power=4)
    elif method == 'DL':
        model = DictionaryLearning(split_sign=True, fit_algorithm='cd', alpha=1)
        if n_jobs is not None:
            model.n_jobs = n_jobs

    if n is not None:
        model.n_components = n
    if max_iter is not None:
        model.max_iter = max_iter
    if random_state is not None:
        model.random_state = random_state
    if n_neighbors is not None:
        model.n_neighbors = n_neighbors


    return model
コード例 #2
0
def optimize_components(X, feature_names, label, abbrev):
    # model selection (optimal number of components)

    # choose number of components by highest average kurtosis
    n_components = np.arange(1, len(feature_names) + 1)
    ica = FastICA(random_state=SEED)
    ica_scores = []
    for n in n_components:
        ica.n_components = n
        result = pd.DataFrame(ica.fit_transform(X))
        ica_scores.append(result.kurtosis().mean())
    n_components_ica = n_components[np.argmax(ica_scores)]
    print(label +
          ": best n_components by average kurtosis = %d" % n_components_ica)

    # create plot
    plt.figure()
    plt.plot(n_components,
             ica_scores,
             'b',
             label='average kurtosis by number of components')
    plt.axvline(n_components_ica,
                color='b',
                label='chosen number of components: %d' % n_components_ica,
                linestyle='--')
    ax = plt.gca()
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    plt.xlabel('number of components')
    plt.ylabel('average kurtosis')
    plt.legend(loc='lower right')
    plt.title(label + ": ICA model selection")
    plt.savefig(path.join(PLOT_DIR, abbrev + "_ica_components.png"),
                bbox_inches='tight')
    plt.show()
    plt.close()

    return n_components_ica
コード例 #3
0
def compute_scores(X):
    pca = PCA(svd_solver='auto')
    kpca = KernelPCA(fit_inverse_transform=True)
    ica = FastICA()
    nmf = NMF(init='nndsvda')
    pca_scores, ica_scores, nmf_scores, kpca_scores = [], [], [], []
    for n in n_components:
        pca.n_components = n
        ica.n_components = n
        nmf.n_components = n
        kpca.n_components = n
        print(n)

        Xpca = pca.inverse_transform(pca.fit_transform(Xs))
        pca_scores.append(explained_variance_score(Xs, Xpca))
        Xica = ica.inverse_transform(ica.fit_transform(Xs))
        ica_scores.append(explained_variance_score(Xs, Xica))
        Xkpca = kpca.inverse_transform(kpca.fit_transform(Xs))
        kpca_scores.append(explained_variance_score(Xs, Xkpca))

        Xnmf = nmf.inverse_transform(nmf.fit_transform(X))
        nmf_scores.append(explained_variance_score(X, Xnmf))

    return pca_scores, ica_scores, nmf_scores, kpca_scores
コード例 #4
0
x = A @ sig
# x += 0.1*np.random.randn(*x.shape)

xm = x - x.mean(axis=1)[:, None]

# #### Perform PCA
u, s, v = np.linalg.svd(xm, full_matrices=False)
nm = np.sum(s > 1e-6)
s_pca = v[:nm, :].T * s[:nm]

# #### Apply ICA
xw = (u / s).T[:sig.shape[0]] @ xm
xw *= np.sqrt(xm.shape[1])
ica = FastICA(algorithm='deflation', tol=1e-12)
ica.whiten = True
ica.n_components = sig.shape[0]
s_ica = ica.fit_transform(xm.T)
# ica.whiten = False
# s_ica = ica.fit_transform(xw.T)
s_ica *= s[:nm].mean()

# #### Plot data
f = mplt.figure(figsize=(10, 10))
gs = mgs.GridSpec(4, 3)
gs.update(top=0.96,
          bottom=0.05,
          left=0.08,
          right=0.98,
          hspace=0.3,
          wspace=0.35)