コード例 #1
0
def myclassify_practice_set(numfiers,xtrain,ytrain,xtltrain,xtltest,xtest,ytarget=None,testing=False,grids='ABCDEFGHI'):
    #NOTE we might not need xtltrain
    # xtrain and ytrain are your training set. xtltrain is the indices of corresponding recordings in xtrain and ytrain. these will always be present
    #xtest is your testing set. xtltest is the corresponding indices of the recording. for the practice set xtltest = xtrunclength
    # ytest is optional and depends on if you are using a testing set or the practice set

    # remove NaN, Inf, and -Inf values from the xtest feature matrix
    xtest,xtltest,ytarget = removeNanAndInf(xtest,xtltest,ytarget)
    # print 'finished removal of Nans'

    ytrain = np.ravel(ytrain)
    ytarget = np.ravel(ytarget)


    #if xtest is NxM matrix, returns Nxnumifiers matrix where each column corresponds to a classifiers prediction vector
    count = 0
    # print numfiers

    predictionMat = np.empty((xtest.shape[0],numfiers))
    predictionStringMat = []
    finalPredMat = []
    targetStringMat = []
    targets1 = []
    predictions1 = []

    # svc1 = SVC()
    # svc1.fit(xtrain,ytrain)
    # ytest = svc1.predict(xtest)
    # predictionMat[:,count] = ytest
    # count+=1
    if count < numfiers:
        # votingClassifiers combine completely different machine learning classifiers and use a majority vote
        clff1 = SVC()
        clff2 = RFC(bootstrap=False)
        clff3 = ETC()
        clff4 = neighbors.KNeighborsClassifier()
        clff5 = quadda()



        eclf = VotingClassifier(estimators = [('svc',clff1),('rfc',clff2),('etc',clff3),('knn',clff4),('qda',clff5)])
        eclf = eclf.fit(xtrain,ytrain)
        #print(eclf.score(xtest,ytest))
        # for claf, label in zip([clff1,clff2,clff3,clff4,clff5,eclf],['SVC','RFC','ETC','KNN','QDA','Ensemble']):
        #     cla
        #     scores = crossvalidation.cross_val_score(claf,xtrain,ytrain,scoring='accuracy')
        #     print ()
        ytest = eclf.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:

        bagging2 = BaggingClassifier(ETC(),bootstrap=False,bootstrap_features=False)
        bagging2.fit(xtrain,ytrain)
        #print bagging2.score(xtest,ytest)
        ytest = bagging2.predict(xtest)
        predictionMat[:,count] = ytest
        count += 1


    if count < numfiers:

        tree2 = ETC()
        tree2.fit(xtrain,ytrain)
        ytest = tree2.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        bagging1 = BaggingClassifier(ETC())
        bagging1.fit(xtrain,ytrain)
        #print bagging1.score(xtest,ytest)
        ytest = bagging1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    if count < numfiers:
        svc1 = SVC()
        svc1.fit(xtrain,ytrain)
        ytest = svc1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        # Quadradic discriminant analysis - classifier with quadratic decision boundary -
        qda = quadda()
        qda.fit(xtrain,ytrain)
        #print(qda.score(xtest,ytest))
        ytest = qda.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    if count < numfiers:

        tree1 = DTC()
        tree1.fit(xtrain,ytrain)
        ytest = tree1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        knn1 = neighbors.KNeighborsClassifier() # this classifies based on the #k nearest neighbors, where k is definted by the user.
        knn1.fit(xtrain,ytrain)
        ytest = knn1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        # linear discriminant analysis - classifier with linear decision boundary -
        lda = linda()
        lda.fit(xtrain,ytrain)
        ytest = lda.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree3 = RFC()
        tree3.fit(xtrain,ytrain)
        ytest = tree3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        bagging3 = BaggingClassifier(RFC(),bootstrap=False,bootstrap_features=False)
        bagging3.fit(xtrain,ytrain)
        ytest = bagging3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    if count < numfiers:
        bagging4 = BaggingClassifier(SVC(),bootstrap=False,bootstrap_features=False)
        bagging4.fit(xtrain,ytrain)
        ytest = bagging4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        tree4 = RFC(bootstrap=False)
        tree4.fit(xtrain,ytrain)
        ytest = tree4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree6 = GBC()
        tree6.fit(xtrain,ytrain)
        ytest = tree6.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        knn2 = neighbors.KNeighborsClassifier(n_neighbors = 10)
        knn2.fit(xtrain,ytrain)
        ytest = knn2.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn3 = neighbors.KNeighborsClassifier(n_neighbors = 3)
        knn3.fit(xtrain,ytrain)
        ytest = knn3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn4 = neighbors.KNeighborsClassifier(algorithm = 'ball_tree')
        knn4.fit(xtrain,ytrain)
        ytest = knn4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn5 = neighbors.KNeighborsClassifier(algorithm = 'kd_tree')
        knn5.fit(xtrain,ytrain)
        ytest = knn5.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    if count < numfiers:
        ncc1 = NearestCentroid()
        ncc1.fit(xtrain,ytrain)
        ytest = ncc1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree5 = ABC()
        tree5.fit(xtrain,ytrain)
        ytest = tree5.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    # print xtltest
    # print len(ytest)
    for colCount in range(predictionMat.shape[1]):
        tempCol = predictionMat[:,colCount]
        if testing:
            modeCol = temppredWindowVecModeFinder(tempCol,xtltest,4,grids,isPrint=0)
        else:
            modeCol = predWindowVecModeFinder(tempCol,xtltest,4,isPrint=0)

        ytarg = predWindowVecModeFinder(ytarget,xtltest,1,isPrint=0)
        if testing:
             modeStr = temppredVec2Str(modeCol,grids)
        else:
            modeStr = predVec2Str(modeCol)
        modeStrans = predVec2Str(ytarg)
        predictionStringMat.append(modeStr)
        predictions1.append(modeCol)
        finalPredMat += map(int,modeCol)
        targetStringMat.append(modeStrans)
        targets1.append(ytarg)
        if testing == False:
            if ytarget != None:
                #print targets1
                #print ""
                #print predictions1
                confusionme = confusion_matrix(targets1[0],predictions1[0])
                #print "Confusion Matrix is: "
                #print confusionme


    return predictionStringMat, targetStringMat, finalPredMat
コード例 #2
0

# In[18]:

# Nearest shrunken Centroid
for shrinkage in [None,0.05,0.1,0.2,0.3,0.4,0.5]:
    ncc2 = NearestCentroid(shrink_threshold = shrinkage)
    ncc2.fit(xtrain,ytrain1)
    print(ncc2.score(xtest,ytest1))


# In[19]:

# linear discriminant analysis - classifier with linear decision boundary - 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as linda
lda = linda()
lda.fit(xtrain,ytrain1)
print(lda.score(xtest,ytest1))


# In[20]:

# Quadradic discriminant analysis - classifier with quadratic decision boundary - 
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as quadda
qda = quadda()
qda.fit(xtrain,ytrain1)
print(qda.score(xtest,ytest1))

# might want to try normalizing stuff, or trying to fix rank deficiencies?

コード例 #3
0
def myclassify(numfiers=5,xtrain=xtrain,ytrain=ytrain,xtest=xtest,ytest=ytest):
    count = 0



    bagging2 = BaggingClassifier(ETC(),bootstrap=False,bootstrap_features=False)
    bagging2.fit(xtrain,ytrain)
    #print bagging2.score(xtest,ytest)
    count += 1
    classifiers = [bagging2.score(xtest,ytest)]

    if count < numfiers:

        tree2 = ETC()
        tree2.fit(xtrain,ytrain)
        #print tree2.fit(xtrain,ytrain)
        #print tree2.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,tree2.score(xtest,ytest))
        print "1"
        print tree2.score(xtest,ytest)

    if count < numfiers:
        bagging1 = BaggingClassifier(ETC())
        bagging1.fit(xtrain,ytrain)
        #print bagging1.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,bagging1.score(xtest,ytest))
        print "2"
        print bagging1.score(xtest,ytest)

#     if count < numfiers:
#         # votingClassifiers combine completely different machine learning classifiers and use a majority vote
#         clff1 = SVC()
#         clff2 = RFC(bootstrap=False)
#         clff3 = ETC()
#         clff4 = neighbors.KNeighborsClassifier()
#         clff5 = quadda()
#         print"3"


#         eclf = VotingClassifier(estimators = [('svc',clff1),('rfc',clff2),('etc',clff3),('knn',clff4),('qda',clff5)])
#         eclf = eclf.fit(xtrain,ytrain)
#         #print(eclf.score(xtest,ytest))
#         # for claf, label in zip([clff1,clff2,clff3,clff4,clff5,eclf],['SVC','RFC','ETC','KNN','QDA','Ensemble']):
#         #     cla
#         #     scores = crossvalidation.cross_val_score(claf,xtrain,ytrain,scoring='accuracy')
#         #     print ()
#         count+=1
#         classifiers = np.append(classifiers,eclf.score(xtest,ytest))


#     if count < numfiers:
#         svc1 = SVC()
#         svc1.fit(xtrain,ytrain)
#         dec = svc1.score(xtest,ytest)
#         count+=1
#         classifiers = np.append(classifiers,svc1.score(xtest,ytest))
#         print "3"

    if count < numfiers:
        # Quadradic discriminant analysis - classifier with quadratic decision boundary -
        qda = quadda()
        qda.fit(xtrain,ytrain)
        #print(qda.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,qda.score(xtest,ytest))
        print "4"


    if count < numfiers:

        tree1 = DTC()
        tree1.fit(xtrain,ytrain)
        #print tree1.fit(xtrain,ytrain)
        #print tree1.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,tree1.score(xtest,ytest))

    if count < numfiers:
        knn1 = neighbors.KNeighborsClassifier() # this classifies based on the #k nearest neighbors, where k is definted by the user.
        knn1.fit(xtrain,ytrain)
        #print(knn1.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,knn1.score(xtest,ytest))

    if count < numfiers:
        # linear discriminant analysis - classifier with linear decision boundary -
        lda = linda()
        lda.fit(xtrain,ytrain)
        #print(lda.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,lda.score(xtest,ytest))

    if count < numfiers:
        tree3 = RFC()
        tree3.fit(xtrain,ytrain)
        #print tree3.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,tree3.score(xtest,ytest))

    if count < numfiers:
        bagging3 = BaggingClassifier(RFC(),bootstrap=False,bootstrap_features=False)
        bagging3.fit(xtrain,ytrain)
        #print bagging3.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,bagging3.score(xtest,ytest))


    if count < numfiers:
        bagging4 = BaggingClassifier(SVC(),bootstrap=False,bootstrap_features=False)
        bagging4.fit(xtrain,ytrain)
        #print bagging4.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,bagging4.score(xtest,ytest))

    if count < numfiers:
        tree4 = RFC(bootstrap=False)
        tree4.fit(xtrain,ytrain)
        #print tree4.score(xtest,ytest)
        count+=1
        classifiers = np.append(classifiers,tree4.score(xtest,ytest))

    if count < numfiers:
        tree6 = GBC()
        tree6.fit(xtrain,ytrain)
        #print(tree6.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,tree6.score(xtest,ytest))

    if count < numfiers:
        knn2 = neighbors.KNeighborsClassifier(n_neighbors = 10)
        knn2.fit(xtrain,ytrain)
        #print(knn2.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,knn2.score(xtest,ytest))

    if count < numfiers:
        knn3 = neighbors.KNeighborsClassifier(n_neighbors = 3)
        knn3.fit(xtrain,ytrain)
        #print(knn3.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,knn3.score(xtest,ytest))

    if count < numfiers:
        knn4 = neighbors.KNeighborsClassifier(algorithm = 'ball_tree')
        knn4.fit(xtrain,ytrain)
        #print(knn4.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,knn4.score(xtest,ytest))

    if count < numfiers:
        knn5 = neighbors.KNeighborsClassifier(algorithm = 'kd_tree')
        knn5.fit(xtrain,ytrain)
        #print(knn5.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,knn5.score(xtest,ytest))

    if count < numfiers:
        ncc1 = NearestCentroid()
        ncc1.fit(xtrain,ytrain)
        #print (ncc1.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,ncc1.score(xtest,ytest))

    if count < numfiers:
    # Nearest shrunken Centroid
        for shrinkage in [None,0.05,0.1,0.2,0.3,0.4,0.5]:
            ncc2 = NearestCentroid(shrink_threshold = shrinkage)
            ncc2.fit(xtrain,ytrain)
            #print(ncc2.score(xtest,ytest))

        count+=1
        classifiers = np.append(classifiers,ncc2.score(xtest,ytest))

    if count < numfiers:
        tree5 = ABC()
        tree5.fit(xtrain,ytrain)
        #print(tree5.score(xtest,ytest))
        count+=1
        classifiers = np.append(classifiers,tree5.score(xtest,ytest))

    classifierlabel = ["BaggingETC (with bootstraps set to false)","ETC","BaggingETC","Voting Classifier","svm","QDA","DTC","KNN (default)","LDA","RFC",
                       "BaggingRFC (with bootstraps set to false)","BaggingSVC (with bootstraps set to false)","RFC (bootstrap false)","GBC",
                        "knn (n_neighbors = 10)","knn (n_neighbors = 3)","knn (ball tree algorithm)","knn (kd_tree algorithm)",
                       "Nearest Centroid","Shrunken Centroid?","ABC"]


    classifierlabel = classifierlabel[:len(classifiers)]
    #print len(classifiers)
    #print classifiers
    for i in range(len(classifiers)):


        print ("{} classifier has percent correct {}".format(classifierlabel[i],classifiers[i]))
コード例 #4
0
def myclassify_AudPow(numfiers,xtrain_1,xtrain_2,ytrain_1,ytrain_2,xtest):

    # remove NaN, Inf, and -Inf values from the xtest feature matrix
    xtest = xtest[~np.isnan(xtest).any(axis=1),:]
    xtest = xtest[~np.isinf(xtest).any(axis=1),:]

    xtrain = np.append(xtrain_1,xtrain_2,0)
    ytrain = np.append(ytrain_1,ytrain_2)
    ytrain = np.ravel(ytrain)
    xtrunclength = sio.loadmat('../Files/xtrunclength.mat')
    xtrunclength = xtrunclength['xtrunclength'][0]



    #if xtest is NxM matrix, returns Nxnumifiers matrix where each column corresponds to a classifiers prediction vector
    count = 0
    # print numfiers

    predictionMat = np.empty((xtest.shape[0],numfiers))
    predictionStringMat = []
    finalPredMat = []

    bagging2 = BaggingClassifier(ETC(),bootstrap=False,bootstrap_features=False)
    bagging2.fit(xtrain,ytrain)
    #print bagging2.score(xtest,ytest)
    ytest = bagging2.predict(xtest)
    predictionMat[:,count] = ytest
    count += 1


    if count < numfiers:

        tree2 = ETC()
        tree2.fit(xtrain,ytrain)
        ytest = tree2.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        bagging1 = BaggingClassifier(ETC())
        bagging1.fit(xtrain,ytrain)
        #print bagging1.score(xtest,ytest)
        ytest = bagging1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        # votingClassifiers combine completely different machine learning classifiers and use a majority vote
        clff1 = SVC()
        clff2 = RFC(bootstrap=False)
        clff3 = ETC()
        clff4 = neighbors.KNeighborsClassifier()
        clff5 = quadda()



        eclf = VotingClassifier(estimators = [('svc',clff1),('rfc',clff2),('etc',clff3),('knn',clff4),('qda',clff5)])
        eclf = eclf.fit(xtrain,ytrain)
        #print(eclf.score(xtest,ytest))
        # for claf, label in zip([clff1,clff2,clff3,clff4,clff5,eclf],['SVC','RFC','ETC','KNN','QDA','Ensemble']):
        #     cla
        #     scores = crossvalidation.cross_val_score(claf,xtrain,ytrain,scoring='accuracy')
        #     print ()
        ytest = eclf.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        svc1 = SVC()
        svc1.fit(xtrain,ytrain)
        ytest = svc1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        # Quadradic discriminant analysis - classifier with quadratic decision boundary -
        qda = quadda()
        qda.fit(xtrain,ytrain)
        #print(qda.score(xtest,ytest))
        ytest = qda.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:

        tree1 = DTC()
        tree1.fit(xtrain,ytrain)
        ytest = tree1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        knn1 = neighbors.KNeighborsClassifier() # this classifies based on the #k nearest neighbors, where k is definted by the user.
        knn1.fit(xtrain,ytrain)
        ytest = knn1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        # linear discriminant analysis - classifier with linear decision boundary -
        lda = linda()
        lda.fit(xtrain,ytrain)
        ytest = lda.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree3 = RFC()
        tree3.fit(xtrain,ytrain)
        ytest = tree3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        bagging3 = BaggingClassifier(RFC(),bootstrap=False,bootstrap_features=False)
        bagging3.fit(xtrain,ytrain)
        ytest = bagging3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    if count < numfiers:
        bagging4 = BaggingClassifier(SVC(),bootstrap=False,bootstrap_features=False)
        bagging4.fit(xtrain,ytrain)
        ytest = bagging4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        tree4 = RFC(bootstrap=False)
        tree4.fit(xtrain,ytrain)
        ytest = tree4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree6 = GBC()
        tree6.fit(xtrain,ytrain)
        ytest = tree6.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        knn2 = neighbors.KNeighborsClassifier(n_neighbors = 10)
        knn2.fit(xtrain,ytrain)
        ytest = knn2.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn3 = neighbors.KNeighborsClassifier(n_neighbors = 3)
        knn3.fit(xtrain,ytrain)
        ytest = knn3.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn4 = neighbors.KNeighborsClassifier(algorithm = 'ball_tree')
        knn4.fit(xtrain,ytrain)
        ytest = knn4.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        knn5 = neighbors.KNeighborsClassifier(algorithm = 'kd_tree')
        knn5.fit(xtrain,ytrain)
        ytest = knn5.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1


    if count < numfiers:
        ncc1 = NearestCentroid()
        ncc1.fit(xtrain,ytrain)
        ytest = ncc1.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1

    if count < numfiers:
        tree5 = ABC()
        tree5.fit(xtrain,ytrain)
        ytest = tree5.predict(xtest)
        predictionMat[:,count] = ytest
        count+=1



    for colCount in range(predictionMat.shape[1]):
        tempCol = predictionMat[:,colCount]
        modeCol = predWindowVecModeFinder(tempCol,xtrunclength)
        modeStr = predVec2Str(modeCol)
        predictionStringMat.append(modeStr)
        finalPredMat += map(int,modeCol)

    return predictionStringMat,finalPredMat