clf.fit(dataset_train_x, dataset_train_y) print("Linear Regression (SGD) Training Score: {}".format( round(clf.score(dataset_train_x, dataset_train_y), 2))) print("Linear Regression (SGD) Testing Score: {}".format( round(clf.score(dataset_test_x, dataset_test_y), 2))) # Bagging with decesion stumps clf = bagging(n_estimators=200, oob_score=True) clf.fit(dataset_train_x, dataset_train_y) print("Bagging Training Score: {}".format( round(clf.score(dataset_train_x, dataset_train_y), 2))) print("Bagging Testing Score: {}".format( round(clf.score(dataset_test_x, dataset_test_y), 2))) # Adaboost clf = adaboost(n_estimators=50, learning_rate=.3) clf.fit(dataset_train_x, dataset_train_y) print("Adaboost Training Score: {}".format( round(clf.score(dataset_train_x, dataset_train_y), 2))) print("Adaboost Testing Score: {}".format( round(clf.score(dataset_test_x, dataset_test_y), 2))) # SVM clf = SVC(C=0.75, gamma=2.0) clf.fit(dataset_train_x, dataset_train_y) print("SVM Training Score: {}".format( round(clf.score(dataset_train_x, dataset_train_y), 2))) print("SVM Testing Score: {}".format( round(clf.score(dataset_test_x, dataset_test_y), 2))) # Multi-level Perceptron Neural Network
print("Hey") #configuration4=config(query_size, RandomForest, quire, TfidfVectorizer,50, [], [5,(1,1)] ) #model4=ALmodel(configuration4,X_train,y_train,X_test,y_test,selection) #model4.run() ps = PlotStyles() vectorizer = tfidfvec(max_features=5000, min_df=5, ngram_range=(1, 1)) vectorizer.fit(X_train) X_full_Vect = vectorizer.transform(X_train) from sklearn.multiclass import OneVsRestClassifier from sklearn.ensemble import RandomForestClassifier as randoforest from sklearn.ensemble import AdaBoostClassifier as adaboost from sklearn.svm import LinearSVC model_full = OneVsRestClassifier(adaboost()) model_full.fit(X_full_Vect, y_train) prediction = model_full.predict(vectorizer.transform(X_test)) accuracy_whole = accuracy_score(y_test, prediction) fig, ax = setup() training_size = [m * query_size for m in range(len(model.accuracy_test))] accuracy_whole = [accuracy_whole for m in range(len(model.accuracy_test))] print(model.accuracy_test) print(model_r.accuracy_test) print(model2.accuracy_test) print(model5.accuracy_test) print(accuracy_whole) ax.plot(training_size,
def __init__(self,params): self.name="Adaboost" self.__model=adaboost() self.params=params self.case='binary'
def __get_ensemble__(self): return adaboost(base_estimator=self.__get_base_estimator__(), n_estimators=30, learning_rate=1e-2)
def __init__(self,params): self.name="OneVsRestClassifier Adaboost" self.__model=OneVsRestClassifier(adaboost()) self.params=params self.case='multiclass'