コード例 #1
0
    def train_net(self,
                  model_s,
                  batch_size = 128,
                  epochs = 20
                  ):
        n_classes = 2
        
#        self.reduce_data(20)
#
#        # Generate new instances to fix any class imbalance(relevant for (16,) set)
#        sm = SMOTE()
#        self.X, self.labels = sm.fit_resample(self.X, self.labels)
        
        # Recalculate energy for SMOTEd instances
#        self.restore_energy_labels()
        
#        if self.verbose:
#            print('Done SMOTEing')
            
        # Test/train split
        x_train, x_test, y_train, y_test = train_test_split(self.X, self.labels, test_size = .2, shuffle = True)

        if self.verbose:
            print('Training balance: %.2f. Testing balance: %.2f' % (np.sum(y_train)/len(y_train), np.sum(y_test)/len(y_test)))
        
        input_shape = None
        if is_cnn(model_s):
            grey2rgb = requires_rgb(model_s)
            x_train, input_shape = self.prepare_X_for_cnn(x_train, grey2rgb)
            x_test, _ = self.prepare_X_for_cnn(x_test, grey2rgb)
        
        # convert class vectors to binary class matrices
        y_train = keras.utils.to_categorical(y_train, n_classes)
        y_test = keras.utils.to_categorical(y_test, n_classes)
        
        # Squawk if desired
        if self.verbose:
            print('x_train shape:', x_train.shape)
            print(x_train.shape[0], 'train samples')
            print(x_test.shape[0], 'test samples')
        
        # Get it
        model = get_model(model_s, input_shape)
        
        """
        CNN will likely overfit XY states, at least on L = 7 lattice. Hence we need early stopping.
        Patience is set to epochs such that we keep looking for the best model over all epochs.
        """
        es = EarlyStopping(monitor = 'val_loss', mode = 'min', patience = epochs, verbose = 1)
        
        # We also want to store our best model, as judged by accuracy
        mc = ModelCheckpoint('Models/Epoch{epoch:02d}_Acc{val_acc:.2f}_V%d_L%d_M%d_N%d_%s.h5' % (int(self.X_vortex), self.L, self.M, self.N, model_s) , monitor='val_acc', mode='max', verbose=1, save_best_only=True)
        
        # Check for boosting
        if self.boost_nn and is_nn(model_s):
            # Different convention for labels. AdaBoostClassifier expects Y to be of form (nsamples,)
            # This in turn means models in get_model must be modified _WHEN_ used in conjuction with AdaBoostClf
            y_test = y_test[:, 0] + y_test[:, 1]*-1
            y_train = y_train[:, 0] + y_train[:, 1]*-1
            
            y_test = (y_test+1)/2
            y_train = (y_train+1)/2
            
            build = lambda: get_model(model_s, input_shape)
            est = KerasClassifier(build_fn = build, epochs = epochs, batch_size = batch_size, verbose = 0)
            
            model = AdaBoostClassifier(base_estimator = est, n_estimators = 1)
            x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = .1)
            print(x_train.shape, y_train.shape)
            model.fit(x_train, y_train)
            self.MODEL = model
            self.XTE = x_test
            # Need to construct our own history manually
            pred_val = model.staged_predict(x_val)
            pred_tr = model.staged_predict(x_train)
            
            accs_val = []
            accs_train = []
            
            for predv, predr in zip(pred_val, pred_tr):
                accs_val.append(accuracy_score(predv, y_val))
                accs_train.append(accuracy_score(predr, y_train))
            
            # Bit lazy, but using accuracy is less hassle. But then we need to trick ourselves:
            history = Bunch()
            history.history = {'loss': accs_train,
                                'val_loss': accs_val
                                }
            score = (-1, accuracy_score(model.predict(x_test), y_test))
            
            # If it's an AdaBoosted neural net, we won't do early stopping or save/load. 
            # It's hackish, but we just store it in instance. Why? Because we already know
            # it'll perform worse than a CNN, so it's not worth the effort at the moment.
            self.model_adaboost = model
        else:
            # Fit and record history
            history = model.fit(x_train, y_train,
                      batch_size=batch_size,
                      epochs=epochs,
                      verbose=1,
                      callbacks = [es, mc],
                      validation_split = 0.1)
            
            # Get the score on the unseen test set
            score = model.evaluate(x_test, y_test, verbose=0)
        
        # Squawk if desired
        if self.verbose:
            print('Test loss:', score[0])
            print('Test accuracy:', score[1])
            

        y_true = y_test[:, 1].astype(int)
        y_pred = np.round(model.predict(x_test)[:, 1]).astype(int)
        
        self.AA = y_true
        self.BB = y_pred
        
        print(classification_report(y_true, y_pred))
        self.f1 = f1_score(y_true, y_pred)
        print('F1-score: %.3f' % self.f1)
        print(confusion_matrix(y_true, y_pred))
        self.rocauc = roc_auc_score(y_true, y_pred)
        self.accuracy = accuracy_score(y_true, y_pred)
        
        # Plot training history
        fig = plt.figure()
        ax = fig.add_subplot(111)
        
        ax.plot(history.history['loss'], label = 'train')
        ax.plot(history.history['val_loss'], label = 'val')
        ax.set_xlabel('Epoch')
        ax.set_ylabel('Loss')
        if is_nn(model_s) and self.boost_nn:
            ax.set_ylabel('Accuracy')
        ax.set_title('Model: %s, Test score: %.3f' % (model_s, score[1]))
        ax.legend()
        
        # Save the plot to file
        plt.savefig('Plots/TrainTestScores/V%d_L%d_M%d_N%d_%s.png' % (int(self.X_vortex), self.L, self.M, self.N, model_s) )
        
        # Save a graph of the model
        plot_model(model, to_file = 'Plots/Model Graphs/%s.png' % (model_s)  )
        
        # And show plot if desired
        if self.plotty:
            plt.show()
コード例 #2
0
                    monitor='val_loss',
                    save_best_only=True)
]

# In[87]:

history = model.fit(x_train,
                    y_train,
                    epochs=250,
                    batch_size=16,
                    validation_data=(x_test, y_test),
                    callbacks=callbacks)
from keras.models import load_model
# model = load_model('best_model.h5', custom_objects={"NoisyRMSprop":noisy()})
model = load_model('best_model.h5')
model.evaluate(x_test, y_test)

# ### Try ANN again with first 64 of 128 time values per row

# In[88]:

x_test = np.dstack(
    (test1.iloc[:, 0:64], test2.iloc[:, 0:64], test3.iloc[:, 0:64],
     test4.iloc[:, 0:64], test5.iloc[:, 0:64], test6.iloc[:, 0:64],
     test7.iloc[:, 0:64], test8.iloc[:, 0:64], test9.iloc[:, 0:64]))
x_train = np.dstack(
    (train1.iloc[:, 0:64], train2.iloc[:, 0:64], train3.iloc[:, 0:64],
     train4.iloc[:, 0:64], train5.iloc[:, 0:64], train6.iloc[:, 0:64],
     train7.iloc[:, 0:64], train8.iloc[:, 0:64], train9.iloc[:, 0:64]))
print(x_train.shape)
print(x_test.shape)
コード例 #3
0
ファイル: model_manager.py プロジェクト: Jie317/dnnlab
class ModelManager(object):
    """Manage and control models during training and test (TODO: prediction)"""
    def __init__(self, args, data_loader, build_dnn_model, send_metric):
        super(ModelManager, self).__init__()
        self.args = args
        self.send_metric = send_metric or (lambda _, __: None)
        self.data = data_loader
        self.max_feature = int(eval(args.max_feature))
        self.model_name = args.model_name
        self.epochs = args.epochs
        self.input_length = self.data.nb_features
        self.batch_size = args.batch_size
        self.sess_id = '%s_%s_%s' % (
            args.id_prefix, self.data.data_label, args.model_name
            or args.machine_learning) + ('_ol' if args.online_learning else '')
        self.steps_per_epoch = args.steps_per_epoch
        self.class_weight = {
            0: 1,
            1: eval(args.imb_learn[2:]) if 'cw' in args.imb_learn else 1
        }
        self.threshold = eval(
            args.imb_learn[2:]) if 'th' in args.imb_learn else .5
        self.build_dnn_model = build_dnn_model
        self.trained_path = args.trained_path or 'results/trained_models/last_model.h5'
        self.continue_train = args.continue_train
        self.eval_trained = args.eval_trained
        self.feed_mode = args.feed_mode
        self.no_save = args.prod or args.no_save
        self.export_option = args.prod or args.export_option
        self.summary = args.summary
        self.max_q_size = 256
        self.workers = 1
        self.verbose = args.verbose
        self.no_eval = args.no_eval
        self.online_learning = args.online_learning
        self.prod = args.prod
        self.val_feed_mode = args.val_feed_mode
        self.machine_learning = args.machine_learning
        self.load_data = self.data.load_data
        self.train_xy = (None, None)  # avoid reloading data
        self.validation_xy = [None, None]
        self.predict_x = None
        self.lst_thresholds = [
            0, 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.05, 0.1, 0.2, 0.5
        ]
        self._make_dirs()
        if self.prod:
            self.callbacks = []
        else:
            tbCB = tensorBoard('results/tensorboard/tbGraph_%s/' %
                               self.sess_id,
                               track_by_samples=True)
            self.callbacks = [tbCB]

    def _make_dirs(self):
        if self.prod:
            dirs = ['results/exported_model_cc/']
        else:
            dirs = [
                'results/trained_models/', 'results/tensorboard/',
                'results/backups/', 'results/figures_prc/',
                'results/different_thresholds/', '.cache/',
                'results/exported_model_cc/'
            ]
        [os.path.exists(d) or os.makedirs(d) for d in dirs]

    def _start_dnn(self):
        self.start_time = time()

        # build or load Keras model
        if self.eval_trained or self.continue_train:
            print('Loading model from: ', self.trained_path)
            self.model = load_model(self.trained_path)
        else:
            self.model = self.build_dnn_model(self.model_name,
                                              self.max_feature,
                                              self.input_length)

        # print model summar
        if self.summary:
            self.model.summary()
        # save graph
        # plot_model(self.model, to_file='results/model.png', show_shapes=True) # TMP

        # start training model
        if not self.eval_trained:
            print('\n', strftime('%c'))

            if self.feed_mode == 'all':
                history = self._train_on_all()

            elif self.feed_mode == 'batch':
                history = self._train_by_batch()

            elif self.feed_mode == 'generator':
                history = self._train_on_generator()

            else:
                raise ValueError('Invalid `feed_mode`: ' + self.feed_mode)

            final_train_loss = history.history['loss'][-1]

            logger.info('Finished training model, final training loss: %.4f' %
                        final_train_loss)
            loss_path = 'results/loss.txt'
            loss_dict = {'training loss': str(final_train_loss)}
            json.dump(loss_dict, open(loss_path, 'w'))

            self.send_metric('model_training_loss', final_train_loss)
            time_used = str(timedelta(seconds=int(time() - self.start_time)))
            print('Training runtime:', time_used)

        # store model and backup config
        if not (self.no_save or self.eval_trained):
            self._save_and_backup()

        # evaluate the model
        if not (self.prod or self.no_eval):
            print('Evaluation')
            if self.val_feed_mode == 'all':
                self.validation_xy = self.validation_xy or self.load_data(
                    'val', feed_mode='all')
                probs = self.model.predict(self.validation_xy[0],
                                           batch_size=self.batch_size * 64,
                                           verbose=1)

            if self.val_feed_mode == 'batch':
                self.validation_xyb = self.load_data('val', feed_mode='batch')
                raise NotImplementedError

            self._get_metric_scores(self.validation_xy[1], probs,
                                    self.model_name)

        # export model for tensorflow serving
        if self.export_option:
            # self._export_model_for_tfserving(self.model)
            self._export_model_for_tfcc()

        # predict new data
        if self.args.predict_path:
            self.predict_x = self.load_data('pred', feed_mode='all')
            probs = self.model.predict(self.predict_x,
                                       batch_size=self.batch_size * 64,
                                       verbose=1)
            np.savetxt('results/predicted_probabilites.csv', probs, fmt='%.8f')
            print('Done prediction for data in %s\n' % self.args.predict_path)

    def _export_model_for_tfcc(self):
        import tensorflow as tf
        from keras import backend as K
        from os import path as osp

        K.set_learning_phase(0)
        with K.get_session() as sess:
            # Alias the outputs in the model - this sometimes makes them easier to access in TF
            pred = []
            # add another node to copy the output node
            new_output = tf.identity(self.model.output[0], name='click_proba')
            print('Output node name: ', 'click_proba')

            outdir = 'results/exported_model_cc/'
            name = 'graph.pb'

            # Write the graph in binary .pb file
            from tensorflow.python.framework import graph_util
            from tensorflow.python.framework import graph_io
            constant_graph = graph_util.convert_variables_to_constants(
                sess, sess.graph_def, ['click_proba'])
            graph_io.write_graph(constant_graph, outdir, name, as_text=False)
            print('Saved the constant graph (ready for inference) at: ',
                  osp.join(outdir, name))

    def _export_model_for_tfserving(self, model):
        """Export model for tensorflow serving (not tested if they work with
        tensorflow c++)
        """
        if self.prod:
            do_export = 'y'
        else:
            do_export = input(
                'Export model for tensorflow serving? [Y/n]') or 'y'

        if 'y' in do_export.lower():
            import tensorflow as tf
            from keras import backend as K
            from tensorflow.python.saved_model import builder as saved_model_builder
            from tensorflow.python.saved_model import tag_constants
            from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def
            if self.prod:
                version_num = 1
            else:
                version_num = input('Version number (int): (default: 1) ') or 1

            export_path = 'results/exported_model/%d/' % version_num
            if os.path.exists(export_path):
                shutil.rmtree(export_path)

            builder = saved_model_builder.SavedModelBuilder(export_path)

            signature = predict_signature_def(
                inputs={'request': model.input},
                outputs={'click_probability': model.output})

            K.set_learning_phase(0)
            with K.get_session() as sess:
                builder.add_meta_graph_and_variables(
                    sess=sess,
                    tags=[tag_constants.SERVING],
                    signature_def_map={'predict': signature})
                builder.save()

            print('Done exporting!\nYou can pass the exported model to'
                  ' tensorflow serving or reload it'
                  ' with tensorflow c++ API\n')
            logger.info('Exported model to path: %s' % export_path)

            return export_path

    def _start_xgboost(self, tr_xy, va_xy):
        from xgboost import XGBClassifier
        self.start_time = time()

        print('\nRunning Xgboost\n')
        self.model = XGBClassifier(max_depth=7,
                                   max_delta_step=1,
                                   silent=False,
                                   n_estimators=178,
                                   learning_rate=0.1,
                                   objective='binary:logistic',
                                   min_child_weight=1,
                                   scale_pos_weight=1)
        self.model.fit(*tr_xy,
                       eval_set=[va_xy],
                       eval_metric='logloss',
                       verbose=True)

        train_time = str(timedelta(seconds=int(time() - self.start_time)))
        print('Training runtime:', train_time)
        probs = self.model.predict_proba(va_xy[0])[:, 1:]
        self._get_metric_scores(va_xy[1], probs, 'xgboost')

    def _start_randomforest(self, tr_xy, va_xy):
        from sklearn.ensemble import RandomForestClassifier
        self.start_time = time()

        print('\nRunning Random Forest\n')
        self.model = RandomForestClassifier(n_estimators=200,
                                            criterion='gini',
                                            max_depth=5,
                                            min_samples_split=2,
                                            min_samples_leaf=1,
                                            min_weight_fraction_leaf=0.0,
                                            max_features='auto',
                                            max_leaf_nodes=None,
                                            min_impurity_split=1e-07,
                                            bootstrap=True,
                                            oob_score=False,
                                            n_jobs=4,
                                            random_state=None,
                                            verbose=1,
                                            warm_start=False,
                                            class_weight=None)
        self.model.fit(*tr_xy)

        train_time = str(timedelta(seconds=int(time() - self.start_time)))
        print('Training runtime:', train_time)
        probs = self.model.predict_proba(va_xy[0])[:, 1:]
        self._get_metric_scores(va_xy[1], probs, 'random_forest')

    def _start_adaboost(self, tr_xy, va_xy):
        from sklearn.ensemble import AdaBoostClassifier
        self.start_time = time()

        print('\nRunning Adaboost\n')
        self.model = AdaBoostClassifier(n_estimators=100,
                                        learning_rate=.3,
                                        algorithm='SAMME.R',
                                        random_state=None)
        self.model.fit(*tr_xy)

        train_time = str(timedelta(seconds=int(time() - self.start_time)))
        print('Training runtime:', train_time)
        probs = self.model.predict_proba(va_xy[0])[:, 1:]
        self._get_metric_scores(va_xy[1], probs, 'adaboost',
                                feature_importance)

    def _get_metric_scores(self, y_real, y_proba, model_name):
        """Calculate metric scores. Input shape must be (n, 1)

        # Arguments
            y_real: 1D array-like ground truth (correct) target values.
            y_proba: 1D array-like estimated probabilities as returned by a
              classifier (model).
            model_name: name of the model to evaluate.

        # Returns
            A set of evaluation results stored in the generated folder
              'results', where the file 'results.csv' appends scalar values,
              the folder 'different_thresholds' stores a table of different
              decision thresholds and their corresponding scores of
              precision, recall, true positives, etc. The precision-recall
              curve is registered in the folder 'pics_prc'.
        """
        def metrics_prf(y_real, y_pred):
            """Compute precision, recall and f-measure"""
            TP = np.sum(y_pred * y_real).astype('int')
            real_pos = np.sum(y_real).astype('int')
            pred_pos = np.sum(y_pred).astype('int')
            P = TP / (pred_pos + 1e-15)
            R = TP / (real_pos + 1e-15)
            Fm = 2 * P * R / (P + R + 1e-15)
            FP = pred_pos - TP
            FN = real_pos - TP
            TN = len(y_real) - real_pos - FP
            return P, R, Fm, TP, FP, FN, TN, real_pos, pred_pos

        def get_prf_for_diff_thresholds(y_real, y_proba, threshold):
            pred_classes = (y_proba > threshold).astype('int8')
            P, R, Fm, TP, FP, FN, TN, _, _ = metrics_prf(y_real, pred_classes)
            return Fm, P, R, TP, FP, FN, TN

        # 1 logloss
        logloss = log_loss(y_real, y_proba)

        # 2 ROC AUC score
        aucRoc = roc_auc_score(y_real, y_proba)

        # 3 precision-recall curve and PR AUC score
        precision, recall, thresholds = precision_recall_curve(y_real, y_proba)
        aucPrc = auc(recall, precision)

        # plt.clf()
        plt.plot(recall,
                 precision,
                 label='%s (aucPR=%.4f)' % (self.sess_id, aucPrc))
        plt.xlabel('Recall')
        plt.ylabel('Precision')
        plt.ylim([0.0, 1.05])
        plt.xlim([0.0, 1.05])
        # plt.title('%s - PRCurve ' % self.sess_id)
        plt.legend(loc="upper right")
        # plt.show()

        # 4 confusion matrix
        pred_classes = (y_proba > self.threshold).astype('int8')
        report = classification_report(y_real, pred_classes)
        P, R, Fm, TP, FP, FN, TN, RP, PP = metrics_prf(y_real, pred_classes)
        print('\n', report)
        print('\nUsing threshold %f' % self.threshold)
        print(
            ' - Precision: %.4f (%d/%d)\n - Recall: %.4f (%d/%d)\n - TP: %d\t'
            '- FP: %d\n - FN: %d\t- TN: %d\n - F1: %.4f\t- Logloss: %.4f\n'
            ' - aucRoc: %.4f - aucPR: %.4f\n' %
            (P, TP, PP, R, TP, RP, TP, FP, FN, TN, Fm, logloss, aucRoc,
             aucPrc))

        # 5 different thresholds
        lst_pr_segs = [
            get_prf_for_diff_thresholds(y_real, y_proba, th)
            for th in self.lst_thresholds
        ]

        # 6 feature importance
        has_f_imp = hasattr(self.model, 'feature_importances_')
        if has_f_imp:
            f_imp = pd.DataFrame({
                'Feature': self.data.features,
                'Score': self.model.feature_importances_
            })
            f_imp.sort_values(by='Score', ascending=False, inplace=True)
            f_imp = f_imp.round(8)
            print(f_imp)

        print('Train pos ratio: %.8f' % (self.data.train_pos_frac),
              'Test pos ratio: %.8f' % self.data.test_pos_frac)

        # write to results.csv
        if not self.no_save:
            np.savetxt('results/different_thresholds/%s' % self.sess_id,
                       np.hstack(
                           (list(zip(self.lst_thresholds)), lst_pr_segs)),
                       fmt='%.4f\t%.4f\t%.4f\t%.4f\t%d\t%d\t%d\t%d',
                       header='Threshold\tF\tP\tR\tTP\tFP\tFN\tTN')
            plt.savefig('results/figures_prc/%s_%.4f.png' %
                        (self.sess_id, aucPrc))
            path_results_csv = 'results/results.csv'
            exists_csv = os.path.exists(path_results_csv)
            with open(path_results_csv, 'a+') as res:
                if not exists_csv:
                    res.write(
                        'Data\taucRoc\tlogLoss\taucPrc\tF\tP\tR\tTP\tFP\tFN'
                        '\tTN\tnbTrain\tratioTrain\tnbTest\tratioTest\t'
                        'epochs\trunTime\tDate\n\n')
                res.write(
                    '%s\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\t%.4f\t%d\t%d\t%d\t%d\t'
                    '%d\t%.4f\t%d\t%.4f\t%d\t%s\t%s\n' %
                    (self.sess_id, aucRoc, logloss, aucPrc, Fm, P, R, TP, FP,
                     FN, TN, self.data.nb_train, self.data.train_pos_frac,
                     self.data.nb_test, self.data.test_pos_frac, self.epochs,
                     timedelta(seconds=int(time() - self.start_time)),
                     strftime('%c')))

            if has_f_imp:
                f_imp.to_csv('results/feature_importances_%s' % model_name,
                             sep='\t',
                             index=None,
                             float_format='%.8f')

            print('\nWritten results to files.\n\n')

    def _train_by_batch(self):
        # batch finite generator should be loaded within epoch loop
        logger.info('Start training by batch')
        self.validation_xy = self.load_data('val', feed_mode='all')
        do_validation = bool(self.validation_xy)

        # prepare display labels in tensorboard
        out_labels = self.model._get_deduped_metrics_names()
        callback_metrics = out_labels + ['val_' + n for n in out_labels]

        # prepare callbacks
        self.model.history = History()
        callbacks = [BaseLogger()] + (self.callbacks
                                      or []) + [self.model.history]
        # callbacks = (self.callbacks or []) + [self.model.history]
        if self.verbose:
            callbacks += [ProgbarLogger(count_mode='samples')]
        callbacks = CallbackList(callbacks)

        # it's possible to callback a different model than this model
        if hasattr(self.model, 'callback_model') and self.model.callback_model:
            callback_model = self.model.callback_model
        else:
            callback_model = self.model
        callbacks.set_model(callback_model)
        callbacks.set_params({
            'epochs': self.epochs,
            'samples': self.data.nb_train,
            'verbose': self.verbose,
            'do_validation': do_validation,
            'metrics': callback_metrics,
        })
        callbacks.on_train_begin()

        for epoch in range(self.epochs):
            start_e = time()
            callbacks.on_epoch_begin(epoch)
            xy_gen = self.load_data('train', feed_mode='batch')
            logger.info('New training epoch')
            for batch_index, (x, y) in enumerate(xy_gen):
                # build batch logs
                batch_logs = {}
                if isinstance(x, list):
                    batch_size = x[0].shape[0]
                elif isinstance(x, dict):
                    batch_size = list(x.values())[0].shape[0]
                else:
                    batch_size = x.shape[0]
                batch_logs['batch'] = batch_index
                batch_logs['size'] = batch_size
                callbacks.on_batch_begin(batch_index, batch_logs)
                outs = self.model.train_on_batch(x, y)

                if not isinstance(outs, list):
                    outs = [outs]
                for l, o in zip(out_labels, outs):
                    batch_logs[l] = o
                callbacks.on_batch_end(batch_index, batch_logs)

                if (batch_index + 1) % 1000 == 0 and do_validation:
                    val_outs = self.model.evaluate(*self.validation_xy,
                                                   batch_size=81920,
                                                   verbose=0)
                    batch_logs = {}
                    if not isinstance(val_outs, list):
                        val_outs = [val_outs]
                    for l, o in zip(out_labels, val_outs):
                        batch_logs['val_' + l] = o
                    print(' - Eval inside: %.6f' % val_outs[0])
                    for cb in self.callbacks:
                        if cb.__class__ == tensorBoard:
                            cb.on_batch_end(batch_index,
                                            batch_logs,
                                            count=False)

            epoch_logs = {}
            if do_validation:
                val_outs = self.model.evaluate(*self.validation_xy,
                                               batch_size=81920,
                                               verbose=0)
                if not isinstance(val_outs, list):
                    val_outs = [val_outs]
                # Same labels assumed.
                for l, o in zip(out_labels, val_outs):
                    epoch_logs['val_' + l] = o

            callbacks.on_batch_end(epoch, epoch_logs)
            callbacks.on_epoch_end(epoch, epoch_logs)

            elapsed_e = timedelta(seconds=int(time() - start_e))
            self.send_metric('elapsed_per_epoch', elapsed_e)

            if not self.no_save and do_validation and (epoch !=
                                                       self.epochs - 1):
                self.model.save(
                    'results/trained_models/%s_ctr_model_%.4f_epoch_%d.h5' %
                    (self.sess_id, val_outs[0], epoch))

        callbacks.on_train_end()
        return self.model.history

    def _train_on_all(self):
        self.train_xy = self.load_data('train', feed_mode='all')
        self.validation_xy = self.load_data('val', feed_mode='all')

        return self.model.fit(*self.train_xy,
                              epochs=self.epochs,
                              batch_size=self.batch_size,
                              validation_data=self.validation_xy,
                              shuffle=True,
                              callbacks=self.callbacks)

    def _train_on_generator(self):
        tr_xy = self.load_data('train', feed_mode='generator')
        self.validation_xy = self.load_data('val', feed_mode='all')

        return self.model.fit_generator(tr_xy,
                                        steps_per_epoch=self.steps_per_epoch,
                                        epochs=self.epochs,
                                        validation_data=self.validation_xy,
                                        class_weight=self.class_weight,
                                        max_q_size=self.max_q_size,
                                        workers=self.workers,
                                        pickle_safe=False,
                                        initial_epoch=0,
                                        verbose=self.verbose,
                                        callbacks=self.callbacks)

    def _save_and_backup(self):
        self.model.save('results/trained_models/%s_model.h5' % (self.sess_id))
        self.model.save(self.trained_path)
        file_name = None  # TODO: get name of the file to backup
        # con_p = 'results/backups/%s_%s.py' % (self.sess_id, file_name)
        # shutil.copyfile(file_name, con_p)
        # with open(con_p, 'a+') as cout:
        #     cout.write('\n# Arguments applied to this run:\n# ' +
        #                str(self.args))
        print('\nSaved model to %s' % self.trained_path)

    def start(self):
        """Start. """

        if self.model_name:
            self._start_dnn()

        ml = self.machine_learning
        if ml:
            tr_xy = self.train_xy or self.load_data('train', feed_mode='all')
            va_xy = self.validation_xy or self.load_data('test',
                                                         feed_mode='all')
            if 'xgb' in ml:
                self._start_xgboost(tr_xy, va_xy)
            if 'rf' in ml:
                self._start_randomforest(tr_xy, va_xy)
            if 'adab' in ml:
                self._start_adaboost(tr_xy, va_xy)
コード例 #4
0
            file_name = 'adaboost_model_' + str(
                int(round(self.score * 10000, 1)))
        joblib.dump(self.model, file_name)


if __name__ == '__main__':

    # classifier = AdaBoostClassifier(
    #                                     # data_file='RD-RDT DATA ALL.csv',
    #                                     train_set=merge_data(group3 + group2),
    #                                     val_set=merge_data(group1),
    #                                     )
    # classifier.fit()
    # classifier = AdaBoostClassifier(
    #                                     # data_file='RD-RDT DATA ALL.csv',
    #                                     train_set=merge_data(group1 + group3),
    #                                     val_set=merge_data(group2),
    #                                     )
    # classifier.fit()
    classifier = AdaBoostClassifier(
        # data_file='RD-1P.csv',
        train_set=merge_data(group1 + group2),
        val_set=merge_data(group3),
    )
    classifier.fit()
    # classifier.save_model()
    # classifier.load_model('rf_model_8629')

    for file in files:
        classifier.evaluate(data_file=file)