コード例 #1
0
class Predictor(BaseEstimator):
    '''Predictor: modify this class to create a predictor of
    your choice. This could be your own algorithm, of one for the scikit-learn
    models, for which you choose the hyper-parameters.'''
    def __init__(self):
        '''This method initializes the predictor.'''
        self.mod = BaggingRegressor(base_estimator=RandomForestRegressor(
            n_estimators=50))
        print("PREDICTOR=" + self.mod.__str__())

    def fit(self, X, y):
        ''' This is the training method: parameters are adjusted with training data.'''
        self.mod = self.mod.fit(X, y)
        return self

    def predict(self, X):
        ''' This is called to make predictions on test data. Predicted classes are output.'''
        return self.mod.predict(X)

    def save(self, path="./"):
        pickle.dump(self, open(path + '_model.pickle', "w"))

    def load(self, path="./"):
        self = pickle.load(open(path + '_model.pickle'))
        return self
コード例 #2
0
class Predictor(BaseEstimator):
    def __init__(self):
        '''This method initializes the predictor.'''
        self.mod = BaggingRegressor(base_estimator=RandomForestRegressor(
            n_estimators=50, max_depth=None, n_jobs=-1))
        print("PREDICTOR=" + self.mod.__str__())

    def fit(self, X, y):
        ''' This is the training method: parameters are adjusted with training data.'''
        self.mod = self.mod.fit(X, y)
        return self

    def predict(self, X):
        ''' This is called to make predictions on test data. Predicted classes are output.'''
        return self.mod.predict(X)

    def save(self, path="./"):
        pickle.dump(self, open(path + '_model.pickle', "w"))

    def load(self, path="./"):
        self = pickle.load(open(path + '_model.pickle'))
        return self