class Predictor(BaseEstimator): '''Predictor: modify this class to create a predictor of your choice. This could be your own algorithm, of one for the scikit-learn models, for which you choose the hyper-parameters.''' def __init__(self): '''This method initializes the predictor.''' self.mod = BaggingRegressor(base_estimator=RandomForestRegressor( n_estimators=50)) print("PREDICTOR=" + self.mod.__str__()) def fit(self, X, y): ''' This is the training method: parameters are adjusted with training data.''' self.mod = self.mod.fit(X, y) return self def predict(self, X): ''' This is called to make predictions on test data. Predicted classes are output.''' return self.mod.predict(X) def save(self, path="./"): pickle.dump(self, open(path + '_model.pickle', "w")) def load(self, path="./"): self = pickle.load(open(path + '_model.pickle')) return self
class Predictor(BaseEstimator): def __init__(self): '''This method initializes the predictor.''' self.mod = BaggingRegressor(base_estimator=RandomForestRegressor( n_estimators=50, max_depth=None, n_jobs=-1)) print("PREDICTOR=" + self.mod.__str__()) def fit(self, X, y): ''' This is the training method: parameters are adjusted with training data.''' self.mod = self.mod.fit(X, y) return self def predict(self, X): ''' This is called to make predictions on test data. Predicted classes are output.''' return self.mod.predict(X) def save(self, path="./"): pickle.dump(self, open(path + '_model.pickle', "w")) def load(self, path="./"): self = pickle.load(open(path + '_model.pickle')) return self