def __init__( self, base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0, ): self._hyperparams = { "base_estimator": make_sklearn_compat(base_estimator), "n_estimators": n_estimators, "max_samples": max_samples, "max_features": max_features, "bootstrap": bootstrap, "bootstrap_features": bootstrap_features, "oob_score": oob_score, "warm_start": warm_start, "n_jobs": n_jobs, "random_state": random_state, "verbose": verbose, } self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0): self._hyperparams = { 'base_estimator': make_sklearn_compat(base_estimator), 'n_estimators': n_estimators, 'max_samples': max_samples, 'max_features': max_features, 'bootstrap': bootstrap, 'bootstrap_features': bootstrap_features, 'oob_score': oob_score, 'warm_start': warm_start, 'n_jobs': n_jobs, 'random_state': random_state, 'verbose': verbose } self._wrapped_model = SKLModel(**self._hyperparams)
def __init__( self, base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm="SAMME.R", random_state=None, ): estimator_impl = base_estimator if isinstance(estimator_impl, lale.operators.Operator): if isinstance(estimator_impl, lale.operators.IndividualOp): estimator_impl = estimator_impl._impl_instance() wrapped_model = getattr(estimator_impl, "_wrapped_model", None) if wrapped_model is not None: estimator_impl = wrapped_model else: raise ValueError( "If base_estimator is a Lale operator, it needs to be an individual operator. " ) self._hyperparams = { "base_estimator": estimator_impl, "n_estimators": n_estimators, "learning_rate": learning_rate, "algorithm": algorithm, "random_state": random_state, } self._wrapped_model = SKLModel(**self._hyperparams) self._hyperparams["base_estimator"] = base_estimator
def __init__( self, base_estimator=None, n_estimators=50, learning_rate=1.0, loss="linear", random_state=None, ): if isinstance(base_estimator, lale.operators.Operator): if isinstance(base_estimator, lale.operators.IndividualOp): base_estimator = base_estimator._impl_instance() wrapped_model = getattr(base_estimator, "_wrapped_model", None) if wrapped_model is not None: base_estimator = wrapped_model else: raise ValueError( "If base_estimator is a Lale operator, it needs to be an individual operator. " ) self._hyperparams = { "base_estimator": base_estimator, "n_estimators": n_estimators, "learning_rate": learning_rate, "loss": loss, "random_state": random_state, } self._wrapped_model = SKLModel(**self._hyperparams)
def fit(self, X, y, sample_weight=None): if isinstance(X, pd.DataFrame): feature_transformer = FunctionTransformer( func=lambda X_prime: pd.DataFrame(X_prime, columns=X.columns), inverse_func=None, check_inverse=False, ) self._hyperparams["base_estimator"] = ( feature_transformer >> self._hyperparams["base_estimator"]) self._wrapped_model = SKLModel(**self._hyperparams) self._wrapped_model.fit(X, y, sample_weight) return self
def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None): if isinstance(base_estimator, lale.operators.Operator): if isinstance(base_estimator, lale.operators.IndividualOp): base_estimator = base_estimator._impl_instance()._wrapped_model else: raise ValueError("If base_estimator is a Lale operator, it needs to be an individual operator. ") self._hyperparams = { 'base_estimator': base_estimator, 'n_estimators': n_estimators, 'learning_rate': learning_rate, 'algorithm': algorithm, 'random_state': random_state} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, estimators=None, voting='hard', weights=None, n_jobs=None, flatten_transform=True): self._hyperparams = { 'estimators': estimators, 'voting': voting, 'weights': weights, 'n_jobs': n_jobs, 'flatten_transform': flatten_transform } self._wrapped_model = SKLModel(**self._hyperparams)
def fit(self, X, y=None): if isinstance(X, pd.DataFrame): feature_transformer = FunctionTransformer( func=lambda X_prime: pd.DataFrame(X_prime, columns=X.columns), inverse_func=None, check_inverse=False, ) self._hyperparams["base_estimator"] = _FitSpecProxy( feature_transformer >> self._hyperparams["base_estimator"]) self._wrapped_model = SKLModel(**self._hyperparams) if y is not None: self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self
def __init__( self, base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm="SAMME.R", random_state=None, ): if base_estimator is None: estimator_impl = None else: estimator_impl = _FitSpecProxy(base_estimator) self._hyperparams = { "base_estimator": estimator_impl, "n_estimators": n_estimators, "learning_rate": learning_rate, "algorithm": algorithm, "random_state": random_state, } self._wrapped_model = SKLModel(**self._hyperparams) self._hyperparams["base_estimator"] = base_estimator